Introduction of the Power Program at USF

Graduate Student Orientation

Lingling Fan, Associate Professor
Aug. 18, 2016
USF Smart Grid Power Systems Lab

Lab location

PV/battery live laboratory

students

Oct. 2015 Lakshan’s defense

Prof. Poor’s (COE Dean of Princeton) visit

2016 Lingling Fan© copyright
Power Program Areas

• **Renewable Energy Integration**
 ◦ Power Electronics
 ◦ Energy Delivery Systems
 ◦ AC Machines and Drives
 ◦ *Related control courses*

• **Power System Operation**
 ◦ Power System Analysis
 ◦ Power Systems II
 ◦ Power Market
 ◦ *Related operations research courses (eg., LP, MIP)*

• **And**
 ◦ Control & Optimization in Power Systems, Power System Protection, Power Quality, Distribution Systems
Renewable energy grid integration

Energy Delivery Systems (solar/wind grid integration, microgrids)

Power Electronics

AC machines and Drives

Electric Machines

Power Systems II (voltage/freq control)

Skills
- PSCAD computer simulation skill
- Computer aided control (hardware) skill

EE graduate

EE undergraduate
Power System Operation

- Linear programming
- Convex Programming
- Discrete Optimization

Power Market

Optimization & Control in Power Systems

Power system analysis

Circuits (KCL, KVL)

Control

Power System II

Other places

Programming Skills
MATLAB, Python, OR tools (CVX, CPLEX)

EE graduate

EE undergraduate

2016 Lingling Fan copyright
Traditional utility engineering

- Power system protection
- Distribution systems
Power program features

- **Excellent curriculum** that prepares students with computer-aid analysis and design skills: software and hardware
 - Software training (PSCAD) in power systems & power electronics courses
 - Programming and software training (Matlab, CPLEX) in power systems & power market
 - Hardware training in machine and control courses

- **Excellent teaching lab/facility**
 - Opal-RT real-time simulators enabled Hardware-in-the-loop testbed

2016 Lingling Fan © copyright
RT-LAB Enabled Drive Lab