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Abstract—In this paper, a novel multi-agent decision making
architecture based on dual’s dual problem formulation is de-
signed for economic operation. The benefits of such architecture
include its limited information exchange among autonomous
entities and the ease of implementation. Existing AC optimal
power flow (OPF) software packages can be easily incorporated.
The proposed decision making is based on dual’s dual problem
formulation, which is the first time seen in the literature to
tackle an OPF problem. Subgradient-based iterative solving
procedure results in a multi-agent decision making architec-
ture. Convergence property of the algorithm is analyzed. The
application scope of the proposed method is also discussed
to identify challenges for meshed networks. Case studies are
given to demonstrate the feasibility of the proposed method in
providing approximate solutions to IEEE 14-bus system AC OPF.
Implementing the proposed decision making architecture in real
world is also demonstrated in a dynamic simulation platform.

Index Terms—Distributed optimization; Primal Dual Decom-
position; Multi Agent Systems; frequency control; convergence
property

I. INTRODUCTION

In this paper, a novel multi-agent decision making archi-
tectures for microgrids and power system optimization and
control will be investigated. Introduction of numerous smart
buildings, distributed energy sources and energy storages poses
challenges in operation and control. A centralized control
center may over burden its SCADA system and computing
machines to collect every piece of measurements and calibrate
optimal operation schemes. On the other hand, due to privacy
concerns, communities are not willing to share all information.
Multi-agent decision making strategies become appealing for
the above mentioned reasons. Information exchange topolo-
gies, convergence properties, and real-world implementation
are all challenging issues to be tackled.

Multi-agent decision making strategies have been seen in
power system applications in the literature, e.g., demand and
utility interactions [1], [2], economic dispatch [3], distributed
DC OPF [4]–[7], and distributed AC OPF [8]–[12]. There are
various names referring to this type of decision making ar-
chitecture, including distributed control, decentralized control
and multi-agent systems. A variety of distributed optimization
problem formulations and algorithms corresponds to a variety
of information exchange topologies.

In terms of distributed problem formulation, the two main
approaches are primal decomposition and dual decomposition
[13]. Dual-based decomposition is suitable for optimization
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problems with decomposed cost functions and global con-
straints [14]. Power system economic operation falls into this
category. Most of the earlier papers on OPF focus on dual
decomposition only. For example, [4] is on dual decomposition
method to solve DC OPF problems. Areas are separated at
the boundary buses. These buses are treated as generators
with constant prices. With given prices, each area carries
out DC OPF and calibrates how much power to export or
import. The prices are updated based on the power difference
on the tie-lines. Dual decomposition has also been applied
in voltage control [15], electric vehicle control [16]. In [8],
instead of formulating a Lagrangian function using Lagrangian
relaxation, an augmented Lagrangian function is formulated.

In addition to Lagrangian relaxation-based dual decomposi-
tion, in some cases, another layer of relaxation is imposed to
have a primal-dual problem. This formulation has been seen in
[17], [18] to explain that a generator’s droop control is aligned
with a primal-dual update process. The optimization problem
formulated in [17], [18] considers a dc network without line
limits. The primal-dual formulation is adopted by the authors
in [7] and developed a new type of distributed DC OPF
algorithm considering line limits for radial networks.

In this paper, inspired by the primal-dual approach, a novel
problem formulation is proposed. The formulation is named
as dual’s dual problem. Instead of going through layers of
Lagrangian relaxation, in this paper, only one layer of relax-
ation of the original OPF problem is examined. This approach
proves that the Lagrangian multiplier of the dual problem in
[17], [18] is indeed the tie-line flow. This formulation will
be extended to AC OPF. In addition, challenges in meshed
network application will be identified for DC OPF.

In terms of iterative procedures, popular approaches include
subgradient-based update [19], alternating direction method
of multipliers (ADMM) [20], saddle-point-flow method [21]
and center free consensus-based update [22]. Subgradient-
based strategies have many multi-agent applications, e.g. [4],
[15], [23]. The authors have also adopted subgradient-based
multi-agent control strategy in [12] for utility-community
interaction. Center-free consensus-based update is also seen in
power system applications. For example, in [3], an economic
dispatch problem is first converted to a consensus problem:
prices at every area should be the same. Then each area
will update its price based on the price information from
the neighboring areas. The price update uses a weighting
matrix (Markov stochastic matrix) to take into account of
the price information from other areas. With the converging
property of a Markov matrix, the prices everywhere will be the
same finally. To apply center free consensus-based update, the
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network has to be assumed to be lossless and the line limits
are ignored.ADMM is another way to carry out distributed
AC OPF. ADMM comes from dual ascent subgradient method.
To enhance convergence performance, the objective function is
augmented with a quadratic function of the equality term. This
method is called method of multiplier. ADMM is based on the
method of multiplier and implemented in a distributed fashion.
When separated into subproblems carried out by multiple
agents, each agent is given information of the Lagrangian
dual (price) and information from other agents. Prices will be
updated based on the decision variables found by agents. In
ADMM based AC OPF, information such as voltage phasors
are exchanged among agents (see Fig. 1 in [24]) and each
agent solves an augmented optimization problem.

In this paper, subgradient-based algorithm is developed,
which results an easy to implement information exchange
architecture.

While information level decision making can be tested
by software packages such as MATPOWER [25], there is a
need to test decision making strategies in dynamic simulation
platforms to examine their effect on power system frequency
responses and dynamics. Few research papers in the literature
have examined distributed control and power system dynamic
performance. Among them, the distributed optimization-based
generator control was implemented into a real-time digital sim-
ulation platform in [3], where the generators’ turbine-governor
power references are updated every 0.1 seconds with additional
frequency feedback. In our research, implementation of the
proposed decision making architecture is also tested in a
dynamic simulation platform.

Overall, the objective of this paper is to design a novel
multi-agent decision making architecture based on dual’s dual
problem formulation. Convergence property and applicability
scope are also investigated. How to implement the architecture
in real-world is illustrated through a dynamic simulation
platform. This paper is the first kind to apply dual’s dual
method in DC or AC OPF solving. The resulting architecture
is easy to be implemented.

The rest of the paper is organized as follows. Section II
presents the dual’s dual problem formulation and the resulting
multi-agent decision making architecture. Section III examines
the convergence property. Section IV examines the challenges
for the proposed method to be implemented in a meshed
network. Section V presents case studies, one on distributed
AC OPF solving and the other on implementation in a dynamic
simulation platform. Section VI concludes the paper.

II. A NOVEL MULTI-AGENT DECISION MAKING
ARCHITECTURE

A. Optimization Problem Formulation
Let us first look at a two-area system shown in Fig. 1. The

original economic dispatch problem Prob1 is as follows.

Prob1 min
P1,P2,P12

f1(P1) + f2(P2) (1a)

subject to λ1 : P1 − P12 = D1 (1b)
λ2 : P2 + P12 = D2 (1c)

−d ≤ P12 ≤ d (1d)

where Pi is the real power generated from Area i, Di is
the load value (real power consumption), fi(Pi) is the cost
function of a generator, and P12 is the line flow from Area 1
to Area 2, and d is assumed to be the line limit. λ1 and λ2 are
the Lagrangian multipliers corresponding to the two equality
constraints. Their definitions are the same as the locational
marginal price (LMP) at Bus 1 and 2. Here we assume that
P 1 ≤ ±d + D1 <= P̄1, and P 2 ≤ ±d + D2 <= P̄2, i.e.,
the sums of line limits and loads are within the area capacity
limits, or the generators will not hit limits before the line hits
limit.

P1 P2
P12

D1 D2

Fig. 1. A two-area system.

The dual problem Prob2 after relaxing the two equality
constraints is as follows.

Prob2 max
λ1,λ2

min
P1,P2,P12

f1(P1) + λ1(D1 − P1 + P12)

+ f2(P2) + λ2(D2 − P2 − P12)

subject to − d ≤ P12 ≤ d (2)

If we treat the line flow P12 separately from the generator
power, then we have Prob3.

Prob3 min
P12

max
λ1

(
min
P1

(f1(P1)− λ1P1) + λ1 (D1 + P12)

)
+ max

λ2

(
min
P2

(f2(P2)− λ2P2) + λ2(D2 − P12)

)
subject to− d ≤ P12 ≤ d (3)

The above formulation Prob3 is similar to the dual problem
of the following optimization problem Prob4.

Prob4 max
λ1,λ2

q1(λ1) + q2(λ2)

subject to λ1 = λ2 (4)

where q1(λ1) = minP1
(f1(P1)− λ1P1) + λ1D1

and q2(λ2) = minP2
(f2(P2)− λ2P2) + λ2D2.

The dual problem of Prob4 is notated as Prob5 and is described
in the following.

Prob5 min
π

max
λ1,λ2

(q1(λ1) + q2(λ2) + π(λ1 − λ2))

Comparing Prob3 and Prob5, it is shown that the Lagrangian
multiplier π associated with λ1 = λ2 is indeed the tie-line
flow P12, if the line flow limit is not hit. Prob3 is equivalent
to the following optimization problem.

min
P12

(
min f1(P1)
s.t. P1 − P12 = D1

)
+

(
min f2(P2)
s.t. P2 + P12 = D2

)
subject to − d ≤ P12 ≤ d (5)
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Remarks:
This problem has a strong economic meaning and application
value. We can decompose a system that is connected by a
tie-line by assuming a tie-line power flow. Each area will
consider the tie-line flow injection or exporting as a negative
(or positive) load. Each area carries out optimization and finds
the LMP for the interfacing bus. At next iteration, the tie-line
flow is updated based on the price difference of the sending
end and receiving end buses. If the price at the sending end is
higher than that at the receiving end, then the tie-line flow
should be reduced. Otherwise, the tie-line flow should be
increased.

B. Example

For the two-area system in Fig. 1, assume that each area
has two generators. Gen 1 and Gen 2 are in Area 1 while
Gen 3 and Gen 4 are in Area 2. The cost functions of the
four generators are 7Pg1, 8Pg2, 9Pg3, and 10Pg4. The power
of each generator should be in the range of [0, 10] pu. The
loads in two areas are 1 pu and 10 pu respectively. Line flow
limit is ignored. For this example, both dual decomposition
and dual’s dual method are applied. For dual decomposition,
each area solves a minimization problem for a given λk.

min
Pg1,Pg2

7Pg1 + 8Pg2 + λk(D1 − Pg1 − Pg2)

s.t.0 ≤ Pg1 ≤ 10, 0 ≤ Pg2 ≤ 10 (6)

min
Pg3,Pg4

9Pg3 + 10Pg4 + λk(D2 − Pg3 − Pg4)

s.t.0 ≤ Pg3 ≤ 10, 0 ≤ Pg4 ≤ 10 (7)

The dual variable updates based on the power imbalance:

λk+1 = λk + αk(
∑

Di −
∑

Pgi) (8)

Fig. 2 gives the iterative results of dual decomposition method.
Fig. 3 gives the iterative results of the dual’s dual method.
Note that the dual decomposition method fails to converge.
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Fig. 2. Dual decomposition method.
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Fig. 3. Dual’s dual method.

The advantage of dual’s dual method compared to the dual
method is listed as follows. For Prob1, dual iteration method
applies to the cases where the cost functions is strictly convex
[20]. When a generator’s cost function is linear, dual method
has difficulty to converge and suffers switching oscillations. In
order to improve convergence, augmented Lagrangian methods
such as method of multipliers and ADMM were proposed [20].
On the other hand, in the dual’s dual method, the tie-line flow
is updated based on the prices computed from each area. Even

with linear cost functions or constant prices at all areas, tie-
line flow will be able to reach its limit if the two prices are
different or reach convergence if the two prices are the same.

As an extension, the application can be extended to consider
AC OPF constraints inside each area. The only assumption
that is different from a complete AC OPF is that the tie-
line is assumed to be lossless. Therefore, using the proposed
problem formulation, an approximate solution for AC OPF can
be found.

C. Information Exchange Architectures

The dual’s dual problem can be solved in iterative and de-
composed ways. In this paper, the classic subgradient updating
procedure [19], [26] is adopted for its simplicity.

For the subgradient-based architecture, the tie-line flow
is assumed and then updated based on its subgradient. In
this case, we find a subgradient of the line flow (P12) is
(λ1 − λ2) from Prob3 (3). Since the primal problem is a
minimization problem, therefore, in the updating procedure,
for a positive gradient, the line flow should be reduced. The
updating procedure is presented as follows.

P k+1
12 = P k12 − αk(λk1 − λk2) (9)

where αk is a positive step size. For a given P k12, the LMPs
(λk1 and λk2) can be found by solving individual optimization
problem for each area. Eq. (5) also complies with economy
consideration. If Area 1 has a higher price, then Area 1’s
export should be reduced. If Area 2 has a higher price, then
Area 1’s export should be increased.

In terms of information exchange, at every decision making
step, Area 1 will broadcast P k12. Area 2 gets the information
and finds its price λk2 . Area 2 then sends this information to
Area 1. And Area 1 updates the tie-line power flow for the
next step. This algorithm can be implemented in any radial
network. For example, for a system in Fig. 4 where a utility is
connected to multiple communities, the information exchange
and updating strategy is demonstrated in Fig. 5.

Utility

Community 1

Community

J-1

Community 

N-1

.

.

.

Fig. 4. A radial system.

First, all tie-line flows from the utility to communities are
assumed. Then AC OPF is carried out for each entity (the
utility or a community). The LMP at the boundary buses
are collected by the utility to update the tie-line flows. This
procedure will continue until the tie-line flows hit limit or
converge to optimal values.
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Fig. 5. Utility and community information exchange strategy: Tie-line flow
updating based dual’s dual method.

As a comparison, the information exchange strategy of
Lagrangian dual variable updating based dual method [12]
is presented in Fig. 6. Although in both strategies, existing
AC OPF solving packages are used, price updating method
requires additional manipulation than tie-line flow updating
method. Note that for the utility and each community, the
connected entities have to be treated as generators with linear
cost functions (or constant prices).
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Pk
1N 

λk+1
j  = λk

j+α(Pk
1j+Pk

j1), j=2,...N

Fig. 6. Utility and community information exchange strategy: Price updating
based dual’s method.

III. CONVERGENCE ANALYSIS

The two-area system is used to illustrate convergence crite-
rion of subgradient update. Assume that the step size α is a
constant value.

A. Subgradient Method
For the subgradient (SG) method, the tie-line flow command

from Bus 1 to Bus 2 is named as π. Hereafter, we use π

instead of P12. This usage is to differentiate the tie-line flow
command determined during the iteration process from the
physical tie-line flow. At steady-state, these two (command
and real value) are the same should the tie-line is lossless.
However, considering power system internal dynamics related
delays, during the dynamic period, these two are different.
Based on π, the LMPs for the two buses can be found. The
generator cost functions are assumed to be quadratic, that is:

f1(P1) = a1P
2
1 + b1P1 + c1, (10)

f2(P2) = a2P
2
2 + b2P2 + c2. (11)

When the capacity limits of generators and tie-lines are not
hit, the prices should be the same as the marginal prices of
the generators. Based on the price difference, the tie-line flow
command is been updated. The computation and updating at
k-th step can be represented by (12). Here the assumption that
P 1 ≤ ±d+D1 <= P̄1, and P 2 ≤ ±d+D2 <= P̄2 hold, i.e.,
the generators will not hit the limits before the line hits limit.
Therefore, the prices will not hit limit during the updating
procedure if the line limit is considered.

λk1 = λ10 + 2a1π
k

λk2 = λ20 − 2a2π
k

πk+1 =


d, if πk − α(λk1 − λk2) >= d

−d, if πk − α(λk1 − λk2) ≤ −d
πk − α(λk1 − λk2), otherwise

(12)

where α > 0 and

λ10 = 2a1D1 + b1; λ20 = 2a2D2 + b2 (13)

The price updating scheme shows that once the maximum
limits λ̄i are hit, the price should stay at its maximum due
to the generator capacity limits. Also, if Area 1 is hitting its
maximum limit, or Area 2 is hitting its minimum capacity
limits, the tie-line flow from Area 1 to 2 should be kept at
its maximum d. On the other hand, if Area 2 is hitting its
maximum capacity limit or Area 1 is hitting its minimum
capacity limits, the tie-line flow from Area 1 to 2 should be
kept at its minimum −d.

Once the tie-line flow hits a limit, the iteration procedure
will make decision if it should end or continue. For example,
if the upper limit of the tie-line from Area 1 to Area 2 is hit,
however, λ1 > λ2, the iteration should continue and the tie-
line flow will be reduced. Otherwise, stop. This implies that
when the tie-line flow is hitting the upper limit, LMP at Area
2 should be greater than LMP at Area 1. The starting point
of the tie-line flow, of course, should be within the feasible
region.
if πk == d, sign(λk1 − λk2) < 0, stop.
if πk == −d, sign(λk1 − λk2) > 0, stop.
otherwise, continue.

Except the limit hitting scenarios, the iteration of the tie-line
flow command can be found:

πk+1 = πk − α
[
λ10 − λ20 + 2(a1 + a2)πk

]
= (1− 2(a1 + a2)α)πk − α(λ10 − λ20). (14)
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B. Convergence property analysis

Convergence property of the above equation (14) can be
both addressed by the convergence condition of an iterative
procedure or discrete dynamic system stability criterion. In
numerical analysis, to guarantee that the error to the true
value is decreasing, the condition for an iteration procedure
expressed by x = φ(x) is that the derivative of φ(x) at the
true value should be less than 1. In linear discrete control
systems, the eigenvalues of the system matrix should be within
the unit circle. Both indicate that for the above mentioned SG-
based iteration, for π to converge to an optimal solution, the
following condition should be met:

|1− 2(a1 + a2)α| < 1 (15)

Therefore, a small α (α < 1
a1+a2

) means a converging
procedure. When α = 1

2(a1+a2)
,

πk+1 = −α(λ10 − λ20) = − λ10 − λ20
2(a1 + a2)

=
−2a1D1 − b1 + 2a2D2 + b2

2(a1 + a2)
. (16)

The above equation shows that if α is chosen to be 1
2(a1+a2)

,
the convergence will be realized in one step. If the generator
cost functions are the same (a1 = a2, b1 = b2), then each
generator will generate the same amount of power D1+D2

2 and
the tie-line flow will be D2−D1

2 . Based on the above equation,
the same answer can be found.

Fig. 7 illustrates the subgradient method with the extreme
case of α = 1

a1+a2
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k
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Fig. 7. Subgradient method. An extreme case when α = 1
a1+a2

and λk2 −
λk1 = λk+1

1 − λk+1
2 . This will cause oscillations.

Remarks: For a nonconstrained convex optimization prob-
lem to minimize f(x), where f : Rn → R, the subgradient
method update is given by

x(k+1) = x(k) − αkg(k),

where αk > 0 and g(k) is any subgradient of f at x(k).
The subgradient algorithm is guaranteed to converge within
some range of the optimal value:

lim
k→∞

f
(k)
best − f

∗ < ε,

where f∗ is the optimal value of the problem, i.e., f∗ =
infx f(x). ε is a function of the step size αk. When αk is
a constant step size, the value f (k) converges to a ball with a
radius of ε [19].

For diminishing step size (i.e., αk → 0, where k →∞), the
algorithm is guaranteed to converge to the optimal value since
ε goes to zero when αk reduces to zero, i.e., limk→∞ f (k) =
f∗.

The above convergence property is related to the value of
the optimization problem or f(x). In this paper, convergence
discussion is related to π, which is the decision variable (we
can view π as x in the general problem). For a diminishing
step size (αk → 0 when k →∞), we can be sure that πk will
converge to a point based on the following updating rule

π(k+1) = π(k) − αkg(k),

If the step size αk is a constant value, convergence of π to
an optimal point requires that the subgradient g becomes zero.
There is no guarantee for fk to reach the optimal value when
k →∞ for a constant step size. Therefore, convergence of πk

to π∗ is not guaranteed for a general problem.
In this paper, the convergence analysis of πk is conducted

for this specific problem with quadratic cost functions. We
found that πk converges to π∗ even with a constant step size.
Limits of the step size are identified to have a convergence
property. This analysis is one of the contributions of our paper.

IV. MESHED NETWORK APPLICATION

The proposed method can be applied to a radial network
or a meshed network that can be separated into multiple areas
radially connected. It however has difficulty to be implemented
into scenarios where areas are connected as a meshed network.
This is due to the feature of the proposed method that tie-
line flows are given and updated without considering network
physics. In this section, we show a meshed network example
and indicate that extra care needs to be taken.

Consider a three-area system connected through a network.
Each area has a generator and a load. The DC OPF problem
is as follows.

min C1(Pg1) + C2(Pg2) + C3(Pg3) (17a)
s.t. λ1 : Pg1 = D1 + P12 + P13 (17b)

λ2 : Pg2 = D2 − P12 + P23 (17c)
λ3 : Pg3 = D3 − P13 − P23 (17d)

d ≤

P12

P13

P23

 = C ·
[
Pg1 −D1

Pg2 −D2

]
≤ d̄ (17e)

where d and d̄ are the line lower limit and upper limit vectors,
C is the power transfer shifting factor matrix. The element of
C matrix (i-th row, j-th column) defines the influence of a
power transfer (from Bus j to the reference bus) on the i-th
line.

For the test system shown in Fig. 8, the C matrix is as
follows when Bus 3 is treated as a reference bus.
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G1 G2

G3

1 2

3

P12

P13
P23

D1 D2

D3

X12=0.2

X13=0.2 X23=0.1

Fig. 8. A meshed network.

C =

0.4 −0.2
0.6 0.2
0.4 0.8

 (18)

Introduce the dual’s dual formulation, we have:

min
P12,P13,P23

max
λi

min
Pgi

C1(Pg1) + C2(Pg2) + C3(Pg3)

+ λ1(D1 + P12 + P13 − Pg1)

+ λ2(D2 − P12 + P23 − Pg2)

+ λ3(D3 − P13−P23 − Pg3) (19)

The above dual’s dual optimization problem can be solved
iteratively by applying the subgradient update method. Note
the gradient of P12 can be found as (λ1−λ2). P12 is a primal
variable. The iteration procedure is given as follows.

P k+1
12 = P k12 − αk1(λk1 − λk2)

P k+1
13 = P k13 − αk2(λk1 − λk3)

P k+1
23 = P k23 − αk3(λk2 − λk3) (20)

The dual’s dual problem formulation has not taken into the
network characteristic into consideration. The tie-line power
flow vector has to be feasible for the network. For example,
the following tie-line power flow vector [250, 0, 0]T MW is not
feasible. Given this tie-line power flow vector, we can find the
net power injection at each bus. The tie-line power flow vector
is dependent on the net power injection (17e). The example is
shown below.

P1

P2

P3

 =

 1 1 0
−1 0 1
0 −1 −1


︸ ︷︷ ︸

A

P12

P13

P23

 =

 250
0
−250

MW (21)

where Pi is the i-th bus net power injection.
In the above equation, the net power from Bus 3 is included.

This power can be excluded. Therefore, we have:[
P1

P2

]
=

[
1 1 0
−1 0 1

]
︸ ︷︷ ︸

A1

P12

P13

P23

 . (22)

Given the net power injection at the each bus, we can find
the tie-line power flow applying (17e).P12

P13

P23

 = C

[
P1

P2

]
= C ·A1

P12

P13

P23

 =

100
150
100

MW (23)

Therefore, in order for the tie-line power flow vector to be
feasible, certain restriction has to be applied. Hereafter, we
notate the tie-line power flow vector as π.

π = C ·A1 · π (24)

Therefore, the tie-line power flow vector has to meet the
above requirement to be feasible. For this particular example,
we find the matrix C ·A1 as

C ·A1 =

0.4 −0.2
0.6 0.2
0.4 0.8

[ 1 1 0
−1 0 1

]
=

 0.6 0.4 −0.2
0.4 0.6 0.2
−0.4 0.4 0.8

 .
The above matrix has a rank of 2 and three eigenvalues as

1, 1, 0. Re-examining (24), we find that in order to be feasible
towards the network characteristic, π should be an eigenvector
of CA1. This eigenvector is related to eigenvalue of 1. For this
case, there are two sets of vectors that are related to eigenvalue
1. The two sets are:

π = k

 0.7276
0.4851
−0.4851

 or π = k

0.1173
0.5355
0.8364

 (25)

Due to the feasibility requirement (25), the step size αi in the
update procedure (20) has to be selected with care. Multiplying
CA1 − I at the left and right of (20), we have

(CA1 − I)

αk1(λk1 − λk2)
αk2(λk1 − λk3)
αk3(λk2 − λk3)

 = 0 (26)

Therefore, for meshed network topology, additional require-
ments are posed for step size. Extra care is to be taken.

a) Alternative method: Due to the difficulty of the up-
dating method based on tie-line flow. An alternative method
is proposed.Consider the DC OPF formulation as follows.

min
Pgi

C1(Pg1) + C2(Pg2) + C3(Pg3)

subject to

Pg1Pg2
Pg3


︸ ︷︷ ︸
Pg

−

D1

D2

D3


︸ ︷︷ ︸
D

= −

−10 5 5
5 −15 10
5 10 −15


︸ ︷︷ ︸

B

θ1θ2
θ3


︸ ︷︷ ︸
θ

(27)

d ≤ Kθ ≤ d (28)

where K is a coefficient matrix and Kθ is the tie-line power
flow vector. The dual problem is expressed as follows.

max
λ

min
Pgi

∑
i

Ci(Pgi) + λT (Pg −D +Bθ)

d ≤ Kθ ≤ d (29)
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where λ is the vector of dual variables associated with Pg −
D = Bθ. If θ can be treated in an additional layer similar as
the tie-line flow, the above problem becomes:

min
θ

max
λ

min
Pgi

∑
i

Ci(Pgi) + λT (−Pg +D −Bθ)

d ≤ Kθ ≤ d
(30)

The gradient for the phase angle vector θ is −BTλ. Since
B is a symmetric matrix, the gradient is −Bλ. The θ based
iterative procedure can be summarized as:
Step 1: Given a vector of θk at k-step, find out the net injection
at each bus P kni, where Pn = −Bθk.
Step 2: For each area, carry out OPF solving by treating the
net injection to the grid P kni as a load. For each area, the
following optimization problem is to be solved.

max
λi

min
Pgi

Ci(Pgi) + λi(−Pgi +Di + P kni) (31)

The price λki at every bus will be found.
Step 3: Update: θk+1 = θk−αBλk, where α is the step size.
We also conducted a numerical test for a three-bus system and
the results over iterations are shown in Fig. 9. The case study
results show that the three prices converge when the line limits
are not considered. For a step size α = 0.0001, the algorithm
converges in less than 200 iterations.
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Fig. 9. Generator power and prices at each bus solved by dual’s dual method.

A. Comparison with ADMM

The above DCOPF problem for the meshed network is also
solved by ADMM. The type of consensus ADMM with a
global variable z is implemented. For each area, θi = zk is a
constraint. The updating procedure for z, Pgi and λi are given
as follows. Note that λi are the dual variable vector related to
θi = zk constraint. It is not the same as the LMP price vector.

P kgi, θ
i,k+1 = argmin{Ci(Pgi) + (λki )T (θi − zk) +

ρ

2
‖θi − zk‖2

s.t. (17b) or (17c) or (17d)}

zk+1 =
1

3

∑
P k+1
gi

λk+1
i = λki + ρ(θi,k+1 − zk+1)
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Fig. 10. Generator power and prices at each bus solved by ADMM method.

Fig. 10 gives the iterative results for ADMM method. Note
that the dual’s dual method and ADMM method can achieve
comparable convergence for this DCOPF problem. To adopt
ADMM, each area’s objective function has to be modified.

V. MORE CASE STUDIES

In this section, two case studies are conducted. The first case
study is to find the approximate AC OPF solution of an IEEE
14-bus system using the proposed multi-agent solving method.
The second case study is to show how to implement iterative
decision making procedure in a more realistic platform. The
procedure is implemented in a dynamic simulation platform in
Power System Toolbox (PST) [27] for a two-area four-machine
system.

P56
P49 P47

Area 1

Area 2

Fig. 11. IEEE 14-bus system.

A. Multi-Agent AC OPF

The system in Fig. 11 is separated into two areas if the
tie-lines Line56, Line47 and Line49 are open. The original
system has Bus 1 designated as the slack bus. For the two
islanded systems, Bus 1 and Bus 6 are designated as the slack
buses for each area respectively. Since these three branches
are for transformers modeled as reactance only, the line flows
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at the sending end and the receiving end are exactly the same.
The reactive power flows are approximated to be zero. This
approximation will result in discrepancy between the solution
of the proposed method and the solution from AC OPF.

Area 1 consists of two generators at bus 6 and bus 8
and loads on the following buses: 11, 12, 13, 14, 10, 6, 7,
and 9. In addition, the existing loads at buses 6,7,9 will be
modified to include the line flow injections from P56, P47,
and P49 respectively. The reactive power injections due to
the three tie-lines are assumed to be zero. Similarly, for Area
2, the tie-line flows are also reflected in load modification.
AC OPF can then be carried out for Area 1 and Area 2.
MATPOWER [28] is used for this research to carry out
AC OPF calibration at each step. The AC OPF formulation
can be found in MATPOWER manual [25], with generator
power output, voltage magnitudes and phase angles included
in decision variables, generator capacity, line flow limits,
and voltage magnitude limits considered. The LMPs at the
boundary buses (4, 5, 6, 7, 9) are exchanged between the two
areas to update the line flows. With updated line flows, the two
areas again carry out AC OPF until the line flows converge or
limits are hit.
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Fig. 12. Boundary bus prices. Step size: 0.1.

Fig. 12 presents the boundary bus prices. The step size is
chosen as 0.1 for iteration. It can be observed that the prices at
Bus 5 and Bus 6 will eventually be the same while the prices
at Bus 4, Bus 7 and Bus 9 are also the same.
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Fig. 13. Tie-line power flow. Step size: 0.1.

Fig. 13 presents the tie-line power flows. The flows are
observed to achieve contant values after initial adjustment.

The solutions using the proposed method are compared with

TABLE I
COMPARISON OF POWER DISPATCH AND POWER FLOW

Centralized AC OPF Proposed Method error (%)
P (MW) Q (Mvar) P (MW) Q (MVar) in P

G1 194.3302 0.0008 194.3333 0.0049 0.0016
G2 36.7192 23.6850 36.7162 12.6079 0.0082
G3 28.7426 24.1269 28.5841 22.6538 0.5514
G4 0.0003 11.5455 0.0004 20.3407 −
G5 8.4949 8.2730 8.5857 4.8770 1.0689

Line56 42.0553 15.1379 43.1045 0 2.4948
Line47 22.8471 -3.9936 17.7270 0 22.4103
Line49 14.8406 1.1668 18.8173 0 26.7961
Total 79.743 12.3111 79.6488 0 0.1181

conventional AC OPF solutions from MATPOWER. Table I
gives the comparison on generator power dispatch and tie-
line flows. It is observed that the real-power dispatch levels
for the five generators are close with less than 1.5% error.
The individual tie-line real-power flows have 26% discrepancy
due to the omission of reactive power injection in the proposed
method. However, the total tie-line power flow has only 0.12%
error.

Further, the LMPs of each bus are listed in Table II. The
greatest error is for Bus 6 at 0.19%. Therefore, overall, the
proposed method can provide a very close approximation of
the optimal power flow solution.

TABLE II
COMPARISON OF LMP ($/MWH).

Centralized OPF Proposed method error (%)
Bus 1 36.7238 36.7240 0.0005
Bus 2 38.3596 38.3581 0.0039
Bus 3 40.5749 40.5717 0.0079
Bus 4 40.1902 40.1754 0.0368
Bus 5 39.6608 39.6561 0.0119
Bus 6 39.7337 39.6561 0.1953
Bus 7 40.1715 40.1727 0.0030
Bus 8 40.1699 40.1717 0.0045
Bus 9 40.1662 40.1780 0.0294
Bus 10 40.3178 40.3156 0.0055
Bus 11 40.1554 40.1191 0.0904
Bus 12 40.3791 40.3028 0.1890
Bus 13 40.5755 40.5111 0.1587
Bus 14 41.1975 41.1713 0.0636

In the next study, the transformer in Line56 is assumed to
have limited capacity of 40 MW. The iterative solutions of
the proposed method are presented in Fig. 14 and 15. It is
observed that when the line limit is hit, the LMPs at Bus 5
and Bus 6 are no longer the same. The proposed method can
take care of tie-line limits.

B. Dynamic simulation platform implementation and fre-
quency response demonstration

The discrete decision making architectures will be imple-
mented into a dynamic simulation platform to examine their
impact on system frequency response. Power System Toolbox
[27] is selected as the dynamic simulation platform. The
classic two-area four-machine power system [29] is modified
slightly to have shortened tie-lines and well-damped elec-
tromechanical dynamics. Generators are modeled as classical
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Fig. 14. Tie-line power flow. Note Line56 hits its limit at 40 MW. Iteration
step size: 1.
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Fig. 15. Tie-line power flow. LMPs for Bus 5 and Bus 6 are different due to
the binding constraint of Line56. Iteration step size: 1.

generators with turbine-governor blocks. Primary frequency
droops with the regulation constant at 4% are all included.

The power system and its privacy-preserving decision mak-
ing architecture are shown in Fig. 16. The discrete decision
making will take place every 5 seconds. The power commands
from Agent 1 and Agent 2 will be sent to change the turbine-
governors’ power reference inputs. Among the two agents,
the information exchanged includes the tie-line power flow
command and the price signal. Area 1 consists of Gen 1 and
Gen 2 and Load 1. Area 2 consists of Gen 3, Gen 4 and Load
2. The two areas are connected through tie-lines. Initially, the
four generators are dispatched at 6.8776 pu, 7.00 pu, 7.16
pu and 7.00 pu. Assume that in Area 1 the two generators

Gen 1

Gen 2

Gen 3

Gen 4

Load 1
 (9.76 pu)

Load 2
 (17.65 pu)

λ2 

 

Agent 1 Agent 2

P1ref  
P2ref

Local 
measurements Local 

measurements

P3ref  
P4ref

Fig. 16. The two-area system: physical topology and the information exchange
architecture.

are having the same quadratic cost functions: 1.5P 2
1 , 1.5P 2

2

and in Area 2 the two generators are also having the same
quadratic cost functions P 2

3 and P 2
4 . The total load is 27.41

pu. If the tie-line transfer limit is very high, then the LMPs
at two areas are the same when tie-line power loss is ignored.
In addition, if the generators’ limits are ignored, then LMP
equals marginal cost of each generator.

Initially the four generators’ dispatch levels are similar.
After the decision making procedures, Area 2’s generators will
have higher dispatch levels as Gen 3 and Gen 4 are much
cheaper than Gen 1 and Gen 2.

The economic dispatch problem is expressed in (32).

min 1.5P 2
g1 + 1.5P 2

g2 + P 2
g3 + P 2

g4

s.t.
∑
i

Pgi = 27.41 (32)

where Pgi is the power dispatch level of ith generator.
The economic dispatch pattern for the four generators from

the optimization problem is: 548.2 MW, 548.2 MW, 822.3
MW, and 822.3 MW. The tie-line flow should be 102 MW or
1.02 pu.

The proposed decision architecture will be implemented.
At every 5 seconds, Area 1 will send Area 2 the tie-line
flow command and Area 2 sends Area 1 its LMP λ2. The
two areas also computes LMPs and dispatch patterns based
on the tie-line flow command π. Area 1 updates the tie-line
flow command π based on the two LMPs. At the next time
interval, Area 1 sends out the updated tie-line flow command.

When implemented into dynamic simulation, the discrete
change for every step should not be too large. This can be
achieved by selecting a varying α in the π updating procedure.
In the first few steps, α should be small. α can be increased
when the price difference becomes smaller.
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Fig. 17. System dynamic responses. Clockwise: a) Generators’ speeds in
pu; b) Generators’ power based on the system power base (100 MW); c)
Generators’ turbine governor unit power based on the system power base
(100 MW); d) Gen 1-3’s angles relative to Gen 4 in radians.

The dynamic responses of the system are presented in Fig.
17. It can be seen that within 100 seconds, the system achieves
a new steady-state. The power dispatch levels of the generators
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are all changed to new levels. The system has a frequency devi-
ation of -0.0006 pu. This is due to the assumption of lossless
line in developing the decision making strategy. The power
dispatched by the generators only takes care of loads. The total
generation is less than the total consumption including loads
and tie-line power loss. Therefore, the steady-state frequency
is below the nominal frequency.

Table III lists the generator dispatch levels at 100 second.
These values are compared with the solutions from the ideal
economic dispatch problem in (32).

TABLE III
GENERATOR DISPATCH LEVELS

Dynamic Simulation Economic Disptach
Pg1 5.62 pu 5.482 pu
Pg2 5.62 pu 5.482 pu
Pg3 8.36 pu 8.223 pu
Pg4 8.36 pu 8.223 pu

It is found that the generator dispatch levels are all higher
than the optimal values from economic dispatch (0.135 pu).
This discrepancy is due to the droop control. For the four 900
MW generators, each is equipped with a droop frequency con-
troller with the droop parameter R at 0.04 pu. Therefore, for a
-0.0006 pu frequency variation, the turbine governors should
provide additional power (∆Pgi, where ∆Pgi = − 1

R∆f ). In
this case, ∆Pgi = 1

0.04 × 0.0006 pu based on the generators’
power base (900 MW) and ∆Pgi = 0.135 pu based on the
system base (100 MW).
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Fig. 18. The Lagrangian multipliers. a) π = π−α(λ1 −λ2) - the line flow
command, where α = 0.2 ∗ n and n the decision making step; b) λ - Area
1 and Area 2 prices computed based on given π.

The discrete decision variables are also recorded for every
simulation step and presented in Fig. 18. It can be found that
in ten steps, both π and LMPs converge to constant values.
The tie-line flow command and the tie-line power flow from
dynamic simulation are plotted against each other. The two are
different due to power system dynamics and the loss in the
network. Initially, all generators are dispatched at the same
level, therefore, generators in Area 1 incur higher marginal

cost. Area 1’s LMP is much higher than Area 2’s LMP. There-
fore, based on the updating mechanism, the tie-line power flow
command from Area 1 to Area 2 should decrease. In turn, Area
1’s generators should dispatch less while Area 2’s generators
should dispatch more power. The dynamic simulation results
reasonably reflect the system behavior during its decision
making process.

VI. CONCLUSION

In this paper, a novel multi-agent decision making archi-
tecture is designed based on dual’s dual problem formulation.
Subgradient updating solving procedure renders an architec-
ture incredibly easy to be implemented. This paper investigates
the convergence property of the algorithm and applicability
in meshed networks. Case studies demonstrates the ability of
multi-agent AC OPF solving. This paper is the first kind to
introduce dual’s dual problem formulation in AC OPF solving.
The method provides a close approximation to AC OPF
solutions. Further, the discrete decision making architectures
are implemented in a dynamic simulation platform to illustrate
the architecture setup in a real-world scenario.
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