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Abstract—This paper employs impedance-model-based fre-
quency domain analysis to detect subsynchronous resonances
(SSR) in Type 3 wind farms with Thyristor Controlled Series
Capacitor (TCSC). The contributions of this paper are (i) the
derivation of dynamic phasor based TCSC impedance model and
(ii) the application of such impedance model in Type 3 wind en-
ergy systems for SSR analysis. Impedance models for TCSC with
constant firing angle control and impedance control are derived in
this paper. With the derived impedance models, Nyquist-stability-
criterion is applied to compare SSR stability in Type 3 wind farm
with TCSC or with fixed capacitor compensation. This paper
employs analytical models to demonstrate TCSC’s capability in
avoiding SSR in Type 3 wind generator interconnection systems.
The analytical results obtained through impedance models are
validated by detail model-based (with thyristor switch modeled)
time-domain simulation in Matlab/SimPowerSystems.

Index Terms—Dynamic Phasor, Impedance Model, Thyristor
Controlled Series Compensator (TCSC), Sub Synchronous Res-
onance (SSR), Doubly Fed Induction Generator (DFIG)

I. INTRODUCTION

UTILITY industry has been concerned with SSR issues
in Type 3 wind generator with series compensated net-

work [1]. The authors have published a series of papers on
this topic employing eigenvalue based analysis [2]–[4] and
frequency domain impedance based analysis [5]–[7]. Com-
pared to eigenvalue based analysis where an entire system’s
dynamic state matrix, eigenvalues and participation factors will
be examined, impedance modeling approach is a frequency
domain approach. Below is a simple example of impedance
based stability analysis. The current in the system presented
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Fig. 1. Voltage source and a load.

in Fig. 1 can be written as

I(s) =
V (s)

Zs(s) + Zl(s)
=
V (s)

Zl(s)

1

1 + Zs(s)
Zl(s)

. (1)
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According to [8], for the stability analysis it has been
assumed that the source voltage is stable when it is
unloaded and the load current is also stable when powered
from an ideal source. This is the same as both Vs(s) and

1
ZL(s) are stable such that stability of the current (Is(s))
depends on stability of second term in (1). Naturally, a
circuit analysis problem now converts to a feedback control
problem and the stability of the system can be judged
by the loop gain Zs(s)

Zl(s)
. Nyquist stability criterion can

be applied to detect instability for this feedback control
system.

Impedance modeling also provides a modular approach. We
can develop an impedance model for a doubly fed induction
generator (DFIG) and an impedance model for a transmission
line. To examine the impact of line parameters on SSR, we
only need to concern the line impedance model. Therefore,
impedance modeling approach can provide insights into in-
vestigation of resonance stability. While our previous research
focuses on systems with fixed capacitor compensation, this
paper will examine the effect of TCSC on SSR in Type 3
wind energy systems. It has been claimed in the literature that
TCSC is neutral to SSR [9]. In addition, Varma et al have
published experimental results to demonstrate that TCSC can
successfully suppress SSR in Type 1 wind generator systems
[10]. The purpose of this paper is to provide a theoretic
explanation to show why TCSC has such capability. The
approach we adopt is frequency domain impedance modeling
and analysis.

TCSC is difficult to model due to its low-order harmonic
components in inductor currents and capacitor voltages. In the
literature, other than dynamic phasor based models, TCSC’s
small-signal model has been developed by three approaches.
In the first approach [11], frequency responses in Bode plots
are obtained from small perturbation of time-domain simu-
lation models. From these Bode plots, transfer functions are
identified. Such method is also called frequency scanning and
has been employed in HVDC models development [12] and
SSR studies [13] and [14] . The first approach relies on

experiments and does not give analytical models. Such models
can be obtained in spite of the system complexity. However,
the disadvantages for system identification approach are listed
as follows.

i There can be many possibilities of model structures and
order. Without a prior knowledge of the TCSC model, it
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is difficult to first assume the structure of the model;
ii In general, system identification approach has the follow-

ing weakness. Some parameters are not sensitive to the in-
put/output measurements and therefore are not detectable.
Many a times, we cannot directly relate a parameter with
physical meaning (e.g., the gain of the firing angle PI
controller) to the coefficients in an identified transfer
function.

In the second approach, TCSC’s steady-state model is
derived [15] based on Fourier analysis and can be expressed
in terms of firing angle. This model can be used to develop
an approximate impedance model. The second approach does
not provide a dynamic model.

In the third approach, TCSC’s analytical model is derived
based on discrete time state space approach [16]–[21]. The
analytical models based on discrete time state space ap-
proach not only predict the system behavior precisely, but
also considered as good analytical basis for control design.
However, they have some disadvantages such as: complicated
modeling derivations; lack of clear relation between the system
configuration and the model structure, and lack of interfacing
capability between the model and standard phasor-based mod-
els of generator dynamics [22].

In this paper, dynamic phasor-based modeling approach will
be used to develop impedance model for TCSC. Dynamic
phasor based modeling technique can include harmonic and
unbalance effects in analytical models and has been em-
ployed in the past for time-domain simulation and small-
signal analysis [22]. The contribution of this paper is to
employ dynamic phasor technique in deriving accurate
impedance models for TCSC with constant firing angle
control and constant impedance control. With the de-
rived impedance models, Nyquist-stability-criterion can be
applied to detect SSR stability in systems with TCSC.
This paper successfully demonstrates TCSC’s capability
in avoiding SSR in Type 3 wind generator interconnection
systems. In addition, effect of DFIG rotor side converter
current control on SSR stability is also investigated. The
analytical results obtained through impedance models are
validated by detail model based time-domain simulation
in Matlab/SimPowerSystems.

The paper is organized as follows. Following Section I
Introduction, Section II presents dynamic phasor concept and
Section III presents modeling and the derivation of TCSC
impedance models under constant firing angle and constant
impedance control. Frequency-domain analysis is presented in
Section IV. Section V presents simulation results validating
the analysis results. Section VI concludes this paper.

II. DYNAMIC PHASOR CONCEPT

The Fourier series representation of a complex time domain
waveform x(τ)in the interval τ ∈ (τ − T, t) can be presented
as

x(τ) =

∞∑
k=−∞

Xk(t) · ejkωτ (2)

Here ω = 2π
T and Xk(t) is the kth complex Fourier coef-

ficient. The coefficients are also referred as dynamic phasor

coefficients which can be obtained using the following average
operation [22].

Xk(t) =
1

T

∫ t

t−T
x(τ)ejkωτ dτ = 〈x〉k(t) (3)

Dynamic phasor Xk is also notated as 〈x〉k, where 〈.〉k rep-
resents the dynamic phasor of the k-th harmonic component.

One of the most important properties of dynamic phasor is
the relationship between derivative of original signal and the
derivative of dynamic coefficient, which can be obtained using
(2). 〈

dx

dt

〉
k

=
dXk

dt
+ jkωXk (4)

Considering only the fundamental frequency (ωs) compo-
nent, the dynamic phasor based impedance models for a series
RL circuit and a capacitor can be derived from the RL circuit
dynamics expressed in (5).

Ri+ L
di

dt
= v

⇒R〈i〉1 + L

(
d〈i〉1
dt

+ jωs〈i〉1
)

= 〈v〉1 (5)

where i is the instantaneous current through the resistor with
resistance R and the inductor with inductance L and v is the
instantaneous voltage across the RL circuit terminal.

Applying Laplace transformation, the ratio of the voltage
phasor against the current phasor in frequency domain can be
found:

〈v〉1
〈i〉1

= R+ (s+ jωs)L.

This impedance is in the complex domain. In the real domain,
an impedance matrix is defined as[

〈v〉R1
〈v〉I1

]
= Z

[
〈i〉R1
〈i〉I1

]
(6)

where the superscripts Rand I refer the real and imaginary
parts of a complex variable and V1 = V R1 − jV I1 .

For a transmission line modeled as a series RL circuit, the
impedance model is expressed as (7). Similarly, for a capacitor
C, the impedance model is expressed as (8).

Zline =

[
R+ sL ωsL
−ωsL R+ sL

]
(7)

ZFC =

[
s

(s2+ω2
s)C

− ωs

(s2+ω2
s)C

ωs

(s2+ω2
s)C

s
(s2+ω2

s)C

]
(8)

III. IMPEDANCE MODEL OF TCSC

With the assumption of a sinusoidal imposed voltage, the
fundamental frequency current through a Thyristor Controlled
Reactor (TCR) can be obtained and further the inductance can
be expressed as [23]:

L(α) = L
π

π − 2α− sin(2α)
(11)

where α is the firing angle measured from the zero crossing
of the line current and L is the inductance of the thyristor-
controlled reactor.
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1
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︸ ︷︷ ︸

A


V R1
V I1
IR1
II1


︸ ︷︷ ︸
X
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1
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C
0 0
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︸ ︷︷ ︸

B

[
IRl1
IIl1

]
︸ ︷︷ ︸
U

(9)

[
V R1
V I1

]
︸ ︷︷ ︸
Y

=

[
1 0 0 0
0 1 0 0

]
︸ ︷︷ ︸

C


V R1
V I1
IR1
II1


︸ ︷︷ ︸
X

(10)

Therefore, a simple TCSC impedance model per-phase can
be expressed as:

ZTCSC(s) =
sL(α)

1 + s2L(α)C
(12)

The assumption of undistorted voltage is not the case in
TCSC. Instead, undistorted line current assumption is usually
used for TCSC. Jalali et al [15] derived a complex steady-state
reactance model for a TCSC. To account for dynamics and
develop frequency domain impedance model, we start from
the state-space model of fundamental frequency component
developed in [22].

L

C

il
vc

i

TCR

Fig. 2. TCSC circuit diagram.
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Fig. 3. TCSC waveforms.

The circuit diagram of a TCSC is presented in Fig .2. This
circuit consists of a capacitor in parallel with a Thyristor
Controlled Reactor (TCR). The net impedance of the TCSC

can be controlled via controlling the fire angle α of the TCR.
Fig. 3 shows the steady state voltage and current waveforms
of the TCSC. The Thyristor is switched on α angle after the
zero crossing of the line current and will be conducting till
τ . Conduction angle is defined as, σ = τ − α and it can be
assumed that the angle σ is symmetrical with respect to the
peak value of the line current to simplify model development.
This assumption is employed in [22]. The dynamic phasor
model for the fundamental voltage and current phasors can be
developed as follows.

The dynamics of the TCSC in phase domain are as follows:{
C dvc

dt = il − i
L didt = qvc

(13)

where il is the line current vc is the voltage across the capac-
itor, i is the current through the TCR and q is the switching
function which represents the TCR switching. q = 1 when
one of the thyristors is conducting and q = 0 when both are
not conducting. Fundamental dynamic phasor representation
of (13) can be obtained using the dynamic phasor concept.{

C dV1

dt = Il1 − I1 − jωsCV1
LdI1dt = 〈qvc〉1 − jωsLI1

(14)

where 〈.〉k represents the dynamic phasor of the k-th harmonic
component, subscript “1” denotes phasors related to the fun-
damental frequency. These phasors are complex variables and
can be expressed by the real part and the imaginary part.

V1 = V R1 − jV I1
I1 = IR1 − jII1
Il1 = IRl1 − jIIl1

(15)

When a TCSC is operating in capacitive region, the fun-
damental component gives a good approximation for the
capacitor voltage, vc [22]. Hence vc can be represented by
only fundamental dynamic phasor coefficients,

vc = V1e
jωst + V ∗1 e

−jωst (16)

Assuming the fundamental component of the inductor
current is symmetric with respect to the peak of actual
inductor current, which means both peaks will happen at
the same time as it can be observed in Fig. 3, then
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〈qvc〉1 =
2

π

∫ τ

α

vce
−jθdθ =

1

π

[
V1σ + V ∗1 sin(σ)e−2j(ξ+φ)

]
(17)

where the definitions of ξ is the phase angle corresponding
to the peak value of the line current and φ is the phase shift
between line current IL1 and the fundamental component
of current I1 through TCR [22]:

ξ =arg(I∗L1)

φ =arg(−IL1.I∗1 ) (18)

At steady state, ξ is considered to be π
2 and φ is considered

as 0. Separating the real and imaginary parts of dynamic

phasors, a fourth-order state-space model of TCSC can be
obtained. The system model is presented in (9) and (10).

1) Impedance Model with Fixed α : With fixed α control,
the system matrix A is a constant matrix, hence the state space
model given in (9) and (10) can be utilized to obtain the
impedance matrix directly as follows.

ZTCSC(s) =
Y (s)

U(s)
= C(sI −A)−1B. (19)

2) Impedance Model with α Control : Fig. 5 shows the
impedance control loop of the TCSC. The unit of impedance
is Ω and the unit of α is degree. Therefore, the unit of Kp

is degree/Ω and the unit of Ki is degree.s/Ω. The Laplace
expression of the firing angle is as follows.

∆α(s) = −H(s)∆Z(s). (20)

Impedance Z is computed from the instantaneous voltage and
current measurements as shown in Fig. 5. The expression of
Z is as follows:

Z =

∣∣∣∣ V1Il1
∣∣∣∣ =

√
(V R1 )2 + (V I1 )2

(IRl1)2 + (IIl1)2
(21)

where I0l and V 0
1 are the fundamental components of initial

line current and capacitor voltage.
Applying small perturbation and the resulting impedance

deviation ∆Z can be expressed as:

∆Z =

[
∂Z

∂X

]T
∆X +

[
∂Z

∂U

]T
∆U (22)

When α is controlled, the system matrix A is no longer a
constant matrix. The resulting small-signal state-space model
is given as:

∆Ẋ = A(α0)∆X +
∂A

∂α
X0∆α+B∆U (23)

Applying Laplace transformation leads to

s∆X(s) = A(α0)∆X(s) +
∂A

∂α
X0∆α+B∆U(s). (24)

Substituting (20) and (22) into (24) leads to
∆X(s)

∆U(s)
=(

sI −A+
∂A

∂α
X0H(s)

∂Z

∂X

)−1(
−∂A
∂α

X0H(s)
∂Z

∂U
+B

)
︸ ︷︷ ︸

GUX(s)

.

(25)

Hence the impedance model is expressed as:

ZTCSC(s) =
∆Y (s)

∆U(s)
= CGUX(s). (26)

IV. FREQUENCY DOMAIN ANALYSIS

A. Stability Criterion

For single-input single-output (SISO) systems, Nyquist plots
and Bode plots of the loop gain Y (s)Z(s) can be used to
detect stability issues and determine phase margin and gain
margins. However, the derived impedance models in this paper
are two by two matrices. In turn, the equivalent control systems
are multi-input multi-output (MIMO) systems. To examine
stability for MIMO systems, [24] proposes to plot the Nyquist
maps of the eigenvalues of the loop gain. Such technique is
employed in [25].

Singular values of the return matrix T (s) = I +
Yl(s)Zs(s) delivers a good measure of stability of a system
since the minimum singular value of the return matrix is
equivalent to the distance between the Nyquist locus and
the critical point (-1,0) in the SISO case [26], [27]. The
difference between maximum and minimum singular value
can be used as a indicator of the system “ill conditioning”
[26]. The larger the difference, the more the system is
prone to “ill condition”.
According to [27], if the return difference matrix T (s) is
nearly singular, then there exists a small perturbation in
Yl(s)Zs(s) that will destabilize the closed-loop system. The
minimum singular value of T (s) measures the nearness to
singularity of T (s). The minimum singular value approach
is useful in detecting the near instability, it is unnecessarily
conservative. This is due to the fact that some of the small
perturbations that would destabilize the closed-loop system
will never occur in the physical system.
It can be further expressed as, if σmin[T (jω)] represents
the smallest singular value at the frequency ω, and if there
is a constant β ≤ 1 such that σmin[T (jω)] ≥ β for all
frequencies, then there is a guaranteed gain margin and
phase margin of [26], [27].

GM =
1

1± β

PM = ±cos−1(1− β2

2
)

(27)

Hence, if the minimum singular value of the return
reference matrix is equal to or more than 1, the system is
guaranteed to have a phase margin of ±60 which means
the system is stable.

On the other hand, if the minimum singular value of the
return reference matrix is less than 1, the system is seen
as not to have sufficient stability margin and the system
is prone to resonances. The corresponding frequency at
the minimum singular value indicates resonance frequency.
This criterion ( the minimum singular value is less than
1) is used to screen out potential instable cases. .
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Fig. 4. The study system: a wind farm connected to grid through a series compensated transmission line.
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Fig. 5. Control block diagram for α Control in TCSC.

B. Case study

In this subsection, the developed TCSC impedance model
is used for stability analysis. A case study considered is a
Type 3 wind farm of 100 MW interconnected with a series
compensated network at 161 kV. The system is modified
from the Second Benchmark model which has been widely
used for SSR studies [28]. It is composed of two parallel
transmission lines. One of them is series compensated. At
t = 4s, the three-phase breaker on the non-compensated line
will be tripped. The wind farm is now radially connected to
a series compensated network. The system diagram is shown
in Fig. 4.

The wind farm is represented with a lumped DFIG model
which is connected to the system through a transformer. Case
studies are carried out for two series compensation methods:
fixed capacitor compensation and TCSC compensation.

DFIG’s Rotor Side Converter (RSC) current controller has
been found to have negative impact on SSR for fixed capacitor
compensated networks [2], [6]. Therefore, in this paper, effect
of RSC current controller parameters on TCSC compensated
networks will be examined. The inner current control loop of
the RSC is illustrated in Fig. 6. Two PI controllers are used
to regulate the currents to yield a proper voltage output. The
gain settings of two PI controllers are the same for d− axis
and q− axis. The unit of the currents is Ampere and the unit
of the voltages are Volt. Therefore the unit of Kp is Ω and
the unit of Ki is Ω/s. The impedance model for a DFIG with
RSC current control adopted in this paper comes from [6]. For
fixed capacitor and TCSC scenarios, the compensation degree
at 60 Hz will be the same. The parameters of the transmission

s

K
K i

p 
*
di

di

s

K
K i

p 
*
qi

qi

av

bv

cv

 

Fig. 6. Inner current control loop for Rotor Side Converter of DFIG.

line, capacitor size and TCSC parameters are listed in Table
IV in Appendix.

1) Fixed Series Compensation: Phase domain based scalar
impedance models for an DFIG has been developed in [6]. For
a transmission line with fixed series compensation, the scalar
impedance model is R+ sL+ 1

sC .
Figs. 7 and 8 present the Nyquist plot for the loop gain

YDFIG(s)Znet(s) (The loop gain is a scalar since both the
DFIG and the compensated line are modeled in phase domain.)
and the Bode plots for ZDIFG(s) and Znet(s), where Znet(s)
is the impedance of the series compensated line, ZDIFG(s)
is the DFIG impedance, and YDFIG = Z−1DFIG. The two
figures show the resonance frequencies at different compen-
sation levels. Observed from the Bode plots, the higher the
compensation degree, the network resonance frequency fn will
be greater. Resonance frequencies for 40 %, 50 %, and 70
% are 29 Hz, 32 Hz and 38 Hz, respectively. It is shown
that phase margin reduced with the increase of the compensa-
tion level. Nyquist plots for all compensation levels encircle
[−1, 0] in clockwise directions, which implies that the system
goes unstable for all compensation levels. SimPowersystems
simulation presented in Section V will confirm instability
for this scenario. Note that the network resonant at fn will
be observed as an oscillation mode with a complementary
frequency (fs − fn, where fs is 60 Hz) in power.

Dynamic phasor-based matrix impedance models are also
used for SSR analysis for the fixed capacitor scenario. Fig. 9
(a) presents the singular value plots of the return difference
matrix 1 + YDFIGZnet in dynamic phasor domain. The ill
conditioning frequencies marked in Fig. 9 are listed in Table
I. The resonance frequencies observed from scalar impedance-
based Bode plots are also listed in Table I. The two sets of
the frequencies should be complement to each other due to the
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Fig. 7. Nyquist plots for fixed capacitor compensation at different compen-
sation levels. RSC controller setting: Kp = 0.6 , Ki = 8.
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difference in reference domains. From Table I, we can see they
are exactly complement to each other. Table I demonstrates
that singular value plots of the return difference matrix can
detect SSR. The results agree with the analysis carried out by
scalar impedance based analysis.

TABLE I
RESONANCE FREQUENCIES IDENTIFIED BY PHASE DOMAIN SCALAR

IMPEDANCE-BASED ANALYSIS AND DYNAMIC PHASOR DOMAIN MATRIX
IMPEDANCE-BASED ANALYSIS

Compensation abc Phase Domain Dynamic Phasor Domain
40 % 29 Hz 31 Hz
50 % 32 Hz 28 Hz
70 % 38 Hz 22 Hz

2) TCSC effect:
a) Fixed alpha mode: Fig. 9 (b) shows the effect of

different compensation levels of TCSC in constant alpha
mode on system stability. Different values for α are given
in Table II. It can be concluded that when the TCSC is in

constant alpha mode, the system has no stability issues for
all the compensation levels because the absolute values of the
singular values are greater than one for all three cases.

TABLE II
COMPENSATION LEVEL, FIRING ANGLE AND EQUIVALENT IMPEDANCE AT

FUNDAMENTAL FREQUENCY OF TCSC

Compensation α Zref

40% 750 52 Ω
50% 71.90 65 Ω
70% 69.350 91 Ω

b) Impedance control mode: Effect of different com-
pensation levels when the TCSC is operated with impedance
control in capacitive mode is illustrated in Fig. 9 (c). The refer-
ence values of TCSC impedances for different compensation
levels are presented in Table II. Fig. 9 (c) shows that as
the compensation level increases to 70%, the system lacks
stability margin and may be unstable and the frequency
of the potential resonance is 22 Hz. The system is stable
for 40% and 50% compensation.

c) Effect of RSC current control: In this case, the TCSC
is in impedance control (capacitive mode). The DFIG RSC
current controller parameters are varied. Fig. 10 presents the
singular values of the return difference matrix. It is found that
when the TCSC is in constant impedance control mode, for the
selected RSC gains, the system is stable. This analysis results
demonstrate the significant improvement on SSR stability due
to TCSC. [2] and [6] have shown that RSC current control
contributes to SSR instability when fixed capacitor is used for
series compensation and increasing the gains of RSC current
control aggravates instability. Analysis in this paper shows that
for TCSC compensated wind farms, RSC current control no
longer affects SSR.

V. TIME-DOMAIN SIMULATION RESULTS

In this section, the analysis results will be verified by the
time-domain simulation results. The study system is con-
structed in Matlab/SimPowersystems. The DFIG model and
the TCSC model are from SimPowersystems library. The
TCSC simulation model includes thyristor switches and TCSC
control dynamics. The detailed model of DFIG for simulation
studies consists of the following elements:

1) power converter IGBT bridges and pulse width modula-
tion (PWM) blocks;

2) RSC and GSC inner current loops and outer
power/voltage loops;

3) RSC and GSC phase-locked loops (PLLs).
Two scenarios will be studied.

A. Effect of different fixed capacitor compensation level

In this case study, a fixed capacitor is employed to provide
series compensation in one of the transmission lines. A line
trip is considered for the uncompensated AC line at t = 4s.
Results of simulation for different compensation level are illus-
trated in Fig. 11. It can be observed that, as the compensation
level increases, the system is more prone to instability. For
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the all the compensation levels, the system loses stability. The
dominant mode in this condition has a frequency about 21
Hz for 70% compensation, 28 Hz for 50% compensation and
32 Hz for 40% compensation. The simulation results are in
agreement with the frequency domain analysis.

B. Effect of fixed alpha mode of TCSC

For the constant firing angle of TCSC, the analysis has
shown that the system will be stable even with 70 %
compensated system. As the system is stable for all the
compensation levels, simulation result for constant alpha
mode under 70 % compensation of transmission line has
been included in Fig. 12. It can be observed that the system
is stable after a fault. This is in agreement with the analysis
results given in Fig. 9 (b).

C. Comparison of TCSC and Fixed Capacitor

In this case study, the compensation level is selected as 70%.
Two scenarios, one using TCSC for series compensation and

3 3.1 3.2 3.3 3.4 3.5
-200

0

200

400

600

P
 (M

W
)

3 3.1 3.2 3.3 3.4 3.5
-800
-600
-400
-200

0
200

Time (sec)

Q
 (M

va
r)

 

 

70%
50%
40%

 

Fig. 11. Simulation results for different compensation level of Fixed Capac-
itor. RSC current control parameters: KP = 0.6, Ki = 8.
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Fig. 12. Simlulation results for constant alpha mode when three phase fault
happens at 4 sec for 2 cycles and compensation level is set to 70 %.

the other using fixed capacitor for series compensation, are
compared. The simulation results are presented in Fig. 13.
It can be observed that, as the line trip happens, the fixed
capacitor compensated power system fails to sustain stability
and large fluctuations will be experienced in the active and
reactive power. In contrast, the TCSC in impedance control
mode can mitigate SSR and the system will retain the stability
after a few cycles. The TCSC control parameters are selected
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to be low to have robust performance. Indicated in the next
case study, if the TCSC control parameters are large, SSR
could appear at 70% compensation level.
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Fig. 13. Results of comparison between Fixed Capacitor and TCSC in 70%
compensation of the line reactance. RSC: KP = 0.6, Ki = 8,TCSC: KP =
0.16, Ki = 0.92.

D. Effect of different TCSC compensation level

In this case study, a TCSC is employed to provide series
compensation in one of the transmission lines. A line trip is
considered for the uncompensated AC line at t = 4s. Three
different compensation levels have been considered for TCSC
at 40%, 50%, and 70% in impedance control mode. Simulation
results are presented in Fig. 14. It can be observed that when
the compensation level is increased to 70%, the active power
of the line is experiencing oscillations around 22 Hz. For
40% and 50% compensation level, the system is stable. The
simulation results corroborate with the singular value analysis
results in Fig. 9.
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Fig. 14. Wind farm output real power and reactive power for different
compensation of TCSC. RSC: KP = 0.6, Ki = 8, TCSC gains: KP = 0.53,
Ki = 3.

E. Effect of RSC current control on TCSC compensated system

In this case study, RSC current controller parameters will
be varied and the compensation level of the TCSC is set to
50% and the TCSC controller parameters are kept constant.
All three cases are stable. The simulation results shown in
Fig. 15 corroborate with the analysis results in Fig. 10. It
can be observed from Fig. 15 that, as the gain settings of

RSC are increased, the system is more likely to be stable.
This phenomenon is very different from the case where fixed
capacitor is used. In [2], [6], studies show that increasing RSC
gains makes the system prone to SSR.
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Fig. 15. Simulation results for different Kp, Ki of DFIG RSC for 50%
compensation level. TCSC controller paramters: KP = 0.32, Ki = 1.84.

Remarks: The simulation results corroborate with the anal-
ysis results. Important observations are drawn as follows:

1) With a TCSC compensated transmission line, a Type-
3 wind farm can be radially connected with the line
and operate safely given appropriate TCSC control pa-
rameters. On the other hand, if fixed capacitor-based
compensation is used, Type-3 wind farms cannot be
radially connected with series compensated lines due to
SSR.

2) The case study demonstrates that in a TCSC intercon-
nected Type-3 wind farm system, RSC current control
does not appear to pose a threat on SSR.

VI. CONCLUSION

This paper develops dynamic phasor based impedance mod-
els for TCSC and carries out frequency domain analysis for
a system with Type 3 wind farm and TCSC. Impedance
models for TCSC with constant firing angle control and
impedance control are derived in this paper. With the derived
impedance models, the Nyquist-stability-criterion is applied
to detect SSR stability in Type 3 wind farm with TCSC. This
paper employs both analysis and time-domain simulation in
Matlab/SimPowersystems to demonstrate TCSC’s capability
in avoiding SSR in Type 3 wind generator interconnection
systems. In addition, for TCSC compensation, both analysis
and simulation results show DFIG RSC current control does
not contribute to SSR instability. The analytical results ob-
tained through impedance models are validated by detailed
based (with thyristor switch modeled) time-domain simulation
in Matlab/SimPowerSystems.
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