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Abstract—In system-level dynamic studies, grid-following
inverter-based resources (IBRs) have been treated as current
sources synchronized to the main grid via phase-locked-loops
(PLL), while the interconnected transmission line is usually
treated as a constant complex impedance. In this letter, we
present the derivation of transient algebraic impedance of the
transmission line and demonstrate its superiority over constant
impedance. We show significant accuracy improvement in pre-
dicting transient stability and oscillations when the constant
impedance is replaced by a transient algebraic impedance.
Furthermore, we derive a small-signal model by use of the
transient algebraic impedance and this model is successful in
explaining the interaction between the PLL and the grid. On
the other hand, if constant impedance is assumed, such stability
issues cannot be predicted.

Index Terms—Phase-locked loop, inverter-based resource,
model reduction, stability analysis, nonlinear simulation

I. INTRODUCTION

THE idea of transient algebraic circuit representation was
introduced in 1993 by Sauer et al. in [1], in which

the authors dealt with a synchronous generator and examined
how synchronous generator’s dynamics, e.g., speed deviation,
may influence the voltage and current relationship of the
interconnected transmission circuit. With flux being replaced
by current, Sauer et al. were able to come up with a dynamic
circuit representation relating the voltage and current phasors.
In such a circuit, the derivative operator d/dt is kept. With
this inclusion, the transmission line’s reactance in the system
DQ frame (rotating at the nominal frequency) is no longer a
constant X , but rather (1+v)X where v is a coefficient related
to d/dt.

This expression of transient reactance is difficult to be
understood. In our prior work, we have developed generalized
dynamic circuits for a synchronous generator [2] operating
at any speed and an unbalanced system [3] used operational
calculus, or the Laplace transform variable s to substitute the
derivative operator d/dt. The Laplace transform variable s has
a clear physical meaning if viewed in the frequency domain.
For example, in the system DQ frame with a constant rotating
speed of ω0, an inductance’s impedance can be represented
by (s+ jω0)L [4], [5]. The operator s reflects the change of
frequency during transients. Therefore, the reactance referred
in [1] can be viewed in the frequency domain for elucidation.

This project is supported in part by NSF 2103480 and in part by EPRI
grant 10014844. L. Fan and Z. Miao are with the Department of Electri-
cal Engineering, University of South Florida, Tampa, FL, 33620 (e-mail:
linglingfan, zmiao@usf.edu). D. Ramasubramanian is with EPRI
(email: dramasubramanian@epri.com).

Demonstration in [1] is limited to one source case only
where a generator is serving a load. Frequency in this type
of islanding system is determined by the generator’s speed
solely. [1] has not shown how to implement transient algebraic
impedance in a grid-connected system for demonstration since
the implementation is not straightforward.

This paper aims to provide a thorough derivation and elu-
cidation of transient algebraic impedance and further demon-
strate its use in a grid-connected IBR system where the IBR
is synchronized to the grid through PLL.

Transients in frequency may be inflicted by an IBR, which
is usually viewed as a current source in the PLL frame.
Therefore, if we want to include the effect of PLL dynam-
ics, it seems intuitive to evaluate s by j∆ω where ∆ω is
the PLL’s frequency deviation. The reactance of the line is
therefore (ω0 + ∆ω)L. While a similar representation has
been seen in the research on PLL related transient stability,
e.g., [6], rigorous derivation of transient algebraic impedance
in a grid-integrated PLL-synchronized IBR system has not
been conducted in the current literature. Comparison against a
testbed with grid EMT dynamics, along with the conventional
reduced-order model, is also missing.

In this letter, we present rigorous derivations of transient
algebraic impedance using two approaches: the ordinary differ-
ential equations (ODE) and the frequency-domain expressions
(Section II). Furthermore, we implement transient algebraic
impedance and explore two applications of high practical
values. In Section III, we present the first application: model
reduction for a grid-integrated IBR. This system is represented
by an 8th-order model, while the reduced-order model has only
4 orders. In Section IV, we present the second application:
stability analysis of PLL and grid interaction. Conclusion is
presented in Section V.

II. TRANSIENT ALGEBRAIC IMPEDANCE DERIVATIONS

Assume a simple topology as shown in Fig. 1.

Fig. 1: A simple topology.

An IBR viewed as a constant current source (id+jiq) in the
PLL frame is interconnected to a constant voltage source V ∞
through a transmission line represented as a pure inductance.
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The point of common coupling (PCC) bus voltage space
vector viewed from the system DQ frame with a synchronous
rotating speed ω0 is notated as a complex vector or phasor
V = V ejδPCC where V is the magnitude and δPCC is the
phase angle.

The current source assumption has been used extensively
for reduced-order modeling [7], transient stability analysis [8],
[9], etc. In [7], the line is assumed as a constant impedance.

A. Derivation based on ODE

In the system DQ frame, we may have the current source
as I = (id + jiq)e

jδ and δ is the PLL output angle. PLL’s
main objective is to track the PCC bus voltage angle or to
align its frame with the PCC bus voltage space vector. In the
modeling and control perspective, the PCC bus voltage vector
V is projected to the PLL frame (its angle against the system
DQ frame is δ) and its q-axis component is enforced to be
0 at steady state. Fig. 2 shows the block diagram of a PLL
viewed in the system DQ frame [10]. It can be seen that:
dδ
dt = ∆ω, ωPLL = ω0 +∆ω.

Fig. 2: PLL’s control block diagram viewed from the system DQ frame. LPF
stands for low-pass filter.

The relationship between the PCC bus voltage phasor and
the current source is as follows:

V = L

(
d

dt
+ jω0

)
I + V ∞ (1)

The complex vector based equation is viewed from the system
DQ frame and this type of expressions can be found in classic
books [11] and [12].

Let I ′ ≜ id + jiq as the current source viewed from the
PLL frame, then I = I ′ ejδ . The derivative of I is expressed
as follows.

dI

dt
=

dI ′

dt
ejδ + jI ′ejδ · dδ

dt
≈ jI ·∆ω, (2)

assuming that id and iq are constants and dI′

dt → 0.
Therefore, (1) becomes the following:

V = j (ω0 +∆ω)L︸ ︷︷ ︸
X(∆ω)

I + V ∞, (3)

The above equation shows that the voltage phasor and the
current phasor are related by a transient algebraic impedance.

B. Derivation based on frequency domain expressions

Alternatively, we may examine the frequency-domain re-
lationship between the PCC bus voltage V and the current
phasor I in the system DQ frame:

∆V = (s+ jω0)L ·∆I = (s+ jω0)L · (∆I ′ejδ + jI∆δ)

= jω0L∆I + sL∆I ′ejδ + jLI · s∆δ. (4)

It can be seen that three components contribute to ∆V .
1) When the transmission line is treated as a constant

impedance, ∆V has only the first component: jω0L∆I .
2) The second component sL∆I ′ejδ is due to the current

transients. This component can be ignored since the
constant current source is assumed due to very fast
current control of IBR.

3) The third component jLI ·s∆δ becomes algebraic (since
s∆δ = ∆ω): jLI∆ω.

Therefore, (4) becomes:

∆V ≈ jω0L ·∆I + jLI ·∆ω = jL∆(ωPLLI) (5)

Therefore, we may find the following:

V = jωPLLL · I + V ∞ = j(ω0 +∆ω)L · I + V ∞. (6)

Remark: The above derivation implicates that instead of ig-
noring all EMT dynamics of the transmission line, preserving
part of them that is associated with PLL dynamics leads to a
transient algebraic impedance.

III. APPLICATION 1: DYNAMIC MODEL REDUCTION

The test system is shown in Fig. 3. Compared to the
circuit in Fig. 1, it has more sophistication by including not
only series resistance but also a shunt capacitor. The RL
circuit represents the transmission line, and the shunt capacitor
represents shunt compensation. The synchronous reference
frame-based PLL has a second-order low-pass filter, which is
necessary for filtering out ripples caused by unbalanced input
voltage [12]. The transfer function of the low-pass filter is as
follows.

GLPF =
ω2
f

s2 + 2ζωfs+ ω2
f

, (7)

where ζ = 1 and ωf = 2π × 25 rad/s.

Fig. 3: The testbed for dynamic simulation.

In this study, two PLLs will be tested and they differ
by their PI controller parameters. PLL1 has its proportional
and integral gains at (50, 500) while PLL2 has its gains at
(200, 2000). Based on the research carried out in [13], PLL2
is known to cause 20-Hz oscillations when the grid is weak.

The order of the EMT testbed (Model 1) in the system DQ
frame is 8. State variables include the dq line current, dq PCC
bus voltage, and 4 variables for the PLL (one related to the
angle, one related to the frequency, and two related to the fil-
ter). Two reduced-order models are constructed, each having 4
orders. Model 2 uses transient algebraic impedance/admittance
and therefore both the capacitor admittance and the inductor
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Fig. 4: Simulation results. X = 0.5, B = 0.1 and initial id = 0.3885 and V = 1. Left: Model 1. Middle: Model 2. Right: Model 3.

impedance contain transients related to the PLL frequency.
The PCC bus voltage complex vector is related to the IBR
current source and the grid voltage algebraically:

X = (ω0 +∆ω)L, B = (ω0 +∆ω)C(
B +

1

R+ jX

)
V = (id + jiq)e

jδ +
V ∞

R+ jX
.

(8)

Model 3 has constant impedance and admittance. Table
I presents the brief descriptions of the three models to be
compared.

TABLE I: Comparison of Models

comments # of state variables
Model 1 EMT 8 (PLL, dq voltage,

dq line current)
Model 2 transient algebraic impedance 4 (PLL)
Model 3 constant impedance 4 (PLL)

Fig. 4 shows the simulation results after 0.4 pu increase in
id at t = 1 s, when PLL2 is employed. It can be clearly seen
that Model 2 matches much better with Model 1. Model 2
can demonstrate the 20-Hz oscillations while Model 3 shows
a very stable system.

In addition, an even larger increase in id is applied to
examine the system behavior close to the transient stability
margin when PLL1 is employed. Based on Fig. 5, Model 1
and Model 2 match very well while Model 3 shows a much
more stable system.

Both simulation cases show that transient algebraic
impedance leads to a much more accurate reduced-order
model.

IV. APPLICATION 2: SMALL-SIGNAL STABILITY
ANALYSIS

In this section, we explain why Model 2 can capture the
20-Hz oscillations while Model 3 cannot. Using the transient
impedance, we develop a linear model to include PLL dy-
namics and the grid impact. In the following, we carry out
stability analysis based on the transient impedance. We first
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Fig. 5: Simulation results of id increases by 0.79 pu for a system with X =
0.75;B = 0.1. PLL parameters: (50, 500).

form a feedback system to describe the signal flow from δPCC

to δ and back to δPCC.
Since a PLL tracks the PCC bus’ phase angle δPCC, its

closed-loop transfer function relates the PCC bus angle and the
PLL angle. For a PLL with a low-pass filter, its closed-loop
transfer function is as follows, assuming the voltage magnitude
is 1 pu.

GPLL =
∆δ

∆δPCC
=

GLPF

(
Kp +

Ki

s

)
1
s

1 +GLPF

(
Kp +

Ki

s

)
1
s

, (9)

Next, the PCC bus’ angle δPCC is influenced by the PLL angle
δ through the transmission line circuit. A linear relationship
between the PCC voltage phasor in the system DQ frame, and
∆ω can be seen as follows:

∆V = jω0L∆I + jI∆ωL. (10)

Note the above equation is a restatement of (5). Also note
that if constant impedance is assumed and if the currents id
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and iq are constant, the voltage phasor and its angle show no
influence towards the PLL frequency.

Let the system DQ frame align with the steady state PCC
voltage space vector. Therefore, δPCC = δ = 0 and I = I ′ =
id + jiq at steady state, and

∆V = ∆(V ejδPCC) = ∆V + jV∆δPCC. (11)

Similar small-signal expressions of the PCC bus voltage
phasor in terms of its magnitude and angle can also be found
in [7], [14].

For simplicity, assume that iq = 0. Therefore, based on (10)
and (11),

∆V = −ω0L ·∆iq

V∆δPCC = Lid ·∆ω + ω0L ·∆id ≈ Lid · s∆δ,
(12)

by assuming ∆id → 0.
Note that this is a very important finding: The PCC bus’

angle is proportional to the PLL frequency deviation.
The feedback system describing the relationship between

the PCC voltage angle δPCC and the PLL angle δ is shown in
Fig. 6.

Fig. 6: The feedback system describing the PCC bus voltage angle and PLL
angle relationship.

The loop gain of the feedback system is as follows:

Loop Gain = − ∆δ

∆δPCC

∆δPCC

∆δ
= −GPLL

Lids

V
. (13)
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Fig. 7: The loop gain of the feedback system. X = 0.5 at the nominal
frequency, V = 1 and id = 0.7885.

Fig. 7 shows the loop gain of the feedback system when
id = 0.7885 and X = 0.5 pu. It can be seen that if PLL2
is used, the loop gain reaches 0 dB at the phase shifting
frequency of 20 Hz. This indicates that the system is subject
to 20-Hz oscillations. On the other hand, if PLL1 is used,
the system is stable. The analysis results corroborate the
simulation results based on Model 1 and Model 2 in Fig. 4.

If constant impedance is assumed, the PLL dynamics has no
influence on the PCC bus angle. The system is always stable
if GPLL is stable. We no longer can explain this particular
dynamic phenomenon which is influenced by grid impedance
and exporting power level.

V. CONCLUSION

This letter offers a new perspective and method to incor-
porate IBR’s influence into circuits. The essential technology
is to preserve part of the circuit EMT dynamics that is
associated with frequency or angle transients. This treatment
is particularly useful to improve modeling accuracy for PLL-
synchronized IBRs that can be viewed as current sources. This
letter focuses on PLL’s influence and this technology results in
transient algebraic impedance, which further leads to reduced-
order models suitable for nonlinear dynamic simulation and
stability analysis. Compared with constant impedance, tran-
sient algebraic impedance helps detect interactions between
PLLs and the grid and leads to more accurate dynamic
performance without increasing the order of a model.
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