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Abstract—Low-frequency oscillations have been observed in a
real-world solar photovoltaic (PV) farm. The goal of this research
is to build a simplified analytical model in the synchronous
frame for large-signal simulation and small-signal analysis. The
latter, e.g., eigenvalue analysis and participation factor analysis,
can reveal influencing factors of the oscillations. Two simplified
analytical models are proposed, ignoring PV dc-side dynamics
(e.g., dc/dc boost converter control and maximum power point
tracking), while preserving the grid-side converter (GSC) controls
and electromagnetic dynamics of the grid interconnection. The
first model assumes that the input power from PV’s dc side is
known and constant. The second model assumes that PV’s dc side
is represented by a constant dc voltage behind an impedance. The
simplified models are compared with an electromagnetic transient
(EMT) testbed with full details on time-domain simulation
results, admittance frequency-domain responses, and eigenvalue-
based stability analysis results. The second simplified model is
found as capable of accurately predicting oscillation stability.

Index Terms—Solar PV; weak grid; low-frequency oscillations;
analytical model; admittance.

I. INTRODUCTION

MORE and more inverter-based resources (IBRs) are
integrated into power grids. In turn, the grid industry is

facing operational challenges. One such challenge is instability
due to IBRs integrated into weak grids [1]. In the real world,
low-frequency oscillations at 4 Hz were observed in type-
4 wind farms at Texas in 2011 [2]. These oscillations limit
power exporting level of wind farms. As a mitigation approach,
ERCOT installed two synchronous condensers at that region
[3]. Consequently, the power exporting level is improved.

This dynamic phenomenon has been thoroughly analyzed
recently, e.g., in [4]–[7]. The instability mechanism is sum-
marized as follows. Due to grid-following control design,
increasing power order of a voltage source converter (VSC)
leads to the increase of d-axis current order, where d-axis
aligns with the point of common coupling (PCC) voltage. An
increase in the d-axis current leads to a decrease in the PCC
voltage magnitude, which in turn results in a decrease in real
power. Thus, an instability mechanism is introduced [4].

The particular dynamic phenomenon related to VSC in weak
grids is termed as weak grid voltage stability by the grid
industry [1]. Increased active power transfer level and weak
grid interconnection may worsen stability [4], [5]. On the other

M. Zhang, Z. Miao, and L. Fan are with the Department of Electri-
cal Engineering, University of South Florida, Tampa, FL, 33620. e-mail:
linglingfan@usf.edu

hand, faster voltage control [7] and reactive power injection
[3], [8] may relieve the stress on stability.

Since both type-4 wind farms and solar PVs employ grid-
following VSC as the interface to power grids, it is plausible to
think that solar PVs may also suffer low-frequency oscillations
at weak grid conditions. This speculation is proved by the real-
world observation: a utility-scale PV plant experienced 7 Hz
oscillations in power measurement during transmission line
outage [9].

Thus, the goal of this paper is to provide a computing
efficient analytical model for a grid-connected solar PV farm
with the capability of both large-signal simulation and small-
signal analysis. The latter can reveal the influencing factors of
low-frequency oscillations besides grid strength.

Nonlinear state-space models have been built for a grid-
connected solar PV in the literature. A detailed PV system
state space model, including GSC controls, dc/dc boost con-
verter controls, has been built by B. Pal’s group in [10], [11].
Reference [10] incorporates maximum power point tracking
(MPPT) and irradiance-driven dynamics. In [11], a state-space
model taking into account of all circuit dynamics is derived
to examine system responses under irradiance fluctuation,
grid faults and frequency distortion. On the other hand, the
proposed models in [10], [11] assume that the PCC bus is
connected to a stiff grid. Thus, the set of the models lacks the
capability of stability analysis at weak grid interconnection
where the PCC bus voltage is no longer a constant voltage
source.

This paper will design a model suitable for weak grid
operation. In addition, since the grid industry desires simplified
models to represent solar PVs for system integration dynamic
studies, a simplified model will be investigated.

According to stability analysis research conducted in 2010
for a 2 MW type-4 wind turbine grid integration system
in [12], the low-frequency oscillations at about 10 Hz are
related to the GSC control and the transmission line length.
This research assumes a model of full details, including GSC
controls, dc-link dynamics, machine side converter controls
and permanent magnet synchronous machine dynamics. Based
on this research, it is reasonable to preserve only GSC control
dynamics and ac circuit dynamics in a simplified model
while ignoring the rest. Indeed, the grid industry’s practice on
dynamic studies with IBR penetration, e.g., [13], ignores dc
side dynamics to keep the overall model order from exploding.

Our prior work [5], [7], [14] on modeling and analysis
of dynamics of type-4 wind farms for subsynchronous os-
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Fig. 1: EMT testbed: 400-kW grid-connected PV Farm. GSC assumes grid-following vector control relying on PLL. YDC and YGSC can be measured from
the testbed.

cillations also suggests that analytical models representing
dc side dynamics using a simplified model, e.g., constant
input power, are suitable to predict stability issues related to
weak grid operation. Comparison of time-domain simulation
results against those from the models with full details has been
conducted in [7], [14].

This paper makes an improvement on the models built in
our prior work [5], [7], [14] by examining different dc side
representations. While constant dc input power is assumed in
[5], [7], [14], constant dc voltage assumption will be examined
and compared with the constant input power assumption in this
paper.

For validation, simplified models will be compared against
an EMT testbed with full details, including all stages of
PV system circuit dynamics and converter control dynam-
ics. Dynamic simulation results, admittance frequency-domain
responses, and eigenvalue analysis results of the simplified
models will be compared with those of the EMT testbed.

The contribution of the paper is two-fold.

• A 15th-order nonlinear dq-frame model is built with
the capability of large-signal simulation and small-signal
analysis for a grid-connected solar PV farm. Specifically,
the dc-side dynamics are represented by an equivalent cir-
cuit and its parameters can be found through the measured
dc admittance. This model can accurately demonstrate
low-frequency oscillations in a PV grid integration sys-
tem. Small-signal analysis based on the model pinpoints
influencing factors of the oscillations.
As a comparison, though many research papers in the
literature also have state-space models designed for grid-
following converters, e.g., [15], [16], those models are
linear models suitable for small-signal analysis only.

• This paper provides a thorough model validation ap-
proach. The proposed simplified models are compared
with the EMT testbed with full details on not only time-
domain simulation results, but also frequency-domain
responses of solar PV admittances. In addition, stability
analysis results are compared using system eigenvalues.

For the analytical models in the synchronous frame, linear
models can be found through numerical perturbation.
With linear models, eigenvalues can be computed. For the
EMT testbed where three-phase instantaneous voltages
and currents are state variables, measurement data-based
admittance characterization is adopted to obtain admit-
tance. Not only the conventional sinusoidal harmonic
injection or frequency scan is employed but also time-
domain step response-based method is employed. With
the PV system admittance available and the grid intercon-
nection admittance derived, s-domain admittance-based
eigenvalue analysis proposed in 1990s in [17] is utilized
for stability analysis. This method is found to lead to
accurate stability analysis compared to Bode plot stability
criterion [18].

The remainder of the paper is organized as follows. Section
II first introduces the 400-kW PV farm grid integration EMT
testbed. Low-frequency oscillations are demonstrated. The
admittance of the PV farm is also characterized. s-domain
admittance-based eigenvalue analysis is then conducted to
find stability limit. Section III describes the simplified models
and presents the comparison results on dynamic simulation,
admittance, and eigenvalue analysis. Section IV presents the
participation factor analysis of the selected simplified model.
The paper is concluded in Section V.

II. DETAILED EMT TESTBED

The testbed is developed based on the 400-kW grid-
connected PV farm demo in MATLAB/SimPowerSystems
[19]. A 400 kW 260 V PV system is integrated into a 120
kV grid through a step transformer, 25 kV line, and another
step-up transformer.

The transmission topology and converter controls have been
tuned for this research. The topology diagram is shown in Fig.
1. The GSC assumes PCC voltage oriented grid-following vec-
tor control and it regulates dc-link voltage and PCC voltage.
The phase-locked loop (PLL) has three-phase PCC voltage as
the input and outputs the PCC voltage angle. The PLL is also
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used to synchronize the converter to the grid. Details of the
converter control can refer to Fig. 9. The PV farm consists
of four PV arrays connected in parallel. Each array has a
capability of 100 kW at 1000 W/m2 sun irradiance.

The PV voltage (VPV ) is the PV array output voltage, or
the input voltage to a dc/dc boost converter. The dc/dc boost
converter control realizes MPPT, which adopts “perturb and
observe” technique. The dc/dc booster’s output voltage is at
500 V level. This 500 V dc voltage is converted to a three-
phase 260 V ac voltage by a VSC. A shunt capacitor (C1)
is connected at the PCC bus to provide reactive power. Two
transformers (T1, T2) step the 260 V ac voltage to 25 kV and
120 kV, respectively. The system parameters are given in Table
I.

TABLE I: PV System Parameters

Description Parameters Value
Power base Sbase 400 kW
Power level PPCC 0.935 pu

System frequency fbase 60 Hz

Converter filter R1 0.15/50 pu
X1 0.15 pu

Shunt capacitor C1 0.25 pu
DC-link capacitor Cdc 0.054 F

Transmission system Rg 0.1Xg

Inner loop Kpi, Kii 0.3, 5
DC-link control loop Kpp, Kip 1, 100
Vac control loop Kpv , Kiv 1, 100
Q control loop Kpq , Kiq 1, 100

PLL Kp,PLL, Ki,PLL 60, 1400
Feedforward filter TV F 0.001

The steady-state limits of the system, denoted by the
aggregated transmission system (from the PCC bus to the
120 kV grid) reactance Xg , can be found by load flow. The
transmission system resistance is assumed to be 10% of the
reactance. Table II presents the two limits: 1.16 pu when the
GSC is in PCC voltage control mode and 0.74 pu when the
GSC is in reactive power control mode. In both cases, the real
power delivery from the GSC to the PCC bus is kept at 0.935
pu.

TABLE II: Steady-State Limits

Control mode PPCC = 0.935 pu
PCC voltage control: VPCC = 1.0 pu Xg = 1.16 pu

Reactive power control: QPCC = 0 pu Xg = 0.74 pu

Low-frequency oscillations at 7 ∼ 8 Hz can be observed
when the transmission line impedance Xg is 1.0 pu. The GSC
assumes dc-link voltage control mode in the d-axis and PCC
voltage control mode in the q-axis. Fig. 2 (a) and (b) present
the system dynamic responses when the PCC voltage control’s
order (V ∗

PCC) steps from 1.0 pu to 0.99 pu at t = 4 s.
It can be clearly seen that the system is at the marginal

stability condition. Fig. 2 (a) shows that 7 Hz oscillations
appear in PV’s 500 V dc-link voltage, dc-side current and
power. Fig. 2 (b) shows that 7 Hz oscillations appear in PV’s
ac side dq-frame current and voltage as well as real power and
reactive power measured at the PCC bus.

Thus, it can be found that oscillations reduce the limit of
operation from Xg = 1.16 pu to Xg = 1.0 pu.

A. Solar PV admittance characterization

Harmonic injection method or frequency scan method is the
most popular method applied for admittance or impedance
characterization [20]–[23]. A measurement testbed is first
built with a PV farm connected to a voltage source at the
measurement point. The measurement point has been notated
as the dotted line after the 260 V/25 kV transformer in Fig.
1. First, the PV farm’s operating condition, defined by the
measured real power and reactive power to the PCC bus from
the converter and the PCC bus voltage magnitude, is set to
be the same as the EMT testbed. The dq-frame admittance
characterization relies on d-axis voltage perturbation and q-
axis voltage perturbation.

For harmonic injection method or frequency scan, the q-
axis voltage is kept intact, sinusoidal injection at a frequency
ωp with a known magnitude is added on top of the d-axis
voltage. The dq-axis currents from the converter are measured
and the harmonic components at ωp frequency are found via
fast Fourier transform (FFT). From this set of experiment,
three phasors are found ∆vd(jωp), ∆id(jωp), and ∆iq(jωp).
Thus, the admittance matrix’s dd and qd components at ωp

frequency can be found as

Ydd(jωp) = − ∆id(jωp)

∆vd(jωp)
, Yqd(jωp) = − ∆iq(jωp)

∆vd(jωp)
.

Similarly, the dq and qq components can be found by vq
perturbation. To obtain the admittance measurement for a span
of frequency range, hundreds of experiments need to be carried
out. Fig. 4a presents the Bode plot of the measured admittance
obtained by frequency scan.

An alternative method for admittance characterization is to
use time-domain data. When the time-domain data of the input
and output channels are obtained, well-known system identi-
fication algorithms, such as numerical algorithm for subspace
state space system Identification (N4SID) [24], Multivariable
Output-Error State Space (MOESP) [25], and Eigensystems
Realization Algorithm (ERA) [26], can be employed. Among
them, ERA has been applied in power systems to identify
reduced-order input/output linear models for power system
stabilizer design and FACTs controller design [27]. An in-
house toolbox relying on ERA algorithm to estimate time-
domain measurement’s transfer function has been designed
for PV farm admittance estimation in this research. Details
of ERA can be found in a tutorial paper from the authors’
research group [28].

The perturbation is designed as a step change in d-axis or
q-axis voltage. Each small-signal perturbation generates two
time-domain responses: dq-axis currents exporting from the
PV farm to the voltage source: i(k)d (t) and i(k)q (t), where k =
1, 2 notates the index of each experiment. With the transfer
functions of i(k)d (s) and i(k)q (s) being identified, the admittance
model can be found as:

YGSC = −

 i
(1)
d (s)

v
(1)
d (s)

i
(2)
d (s)

v
(2)
q (s)

i(1)q (s)

v
(1)
d (s)

i(2)q (s)

v
(2)
q (s)

 = −s
p

[
i
(1)
d (s) i

(2)
d (s)

i
(1)
q (s) i

(2)
q (s)

]
(1)
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Fig. 2: Dynamic responses of the EMT testbed with full details (a)(b), and two simplified models (c)(d). V ∗
PCC steps from 1.0 to 0.99 at t = 4 s. (a) Detailed

testbed: dc side variables (duty cycle of the dc/dc boost converter, PV side voltage, boost converter output voltage, dc side current and dc side power); (b)
Detailed testbed: ac side variables (dq-axis GSC current to the PCC bus, dq-axis PCC bus voltage, and real and reactive power to PCC bus), Xg = 1.0 pu;
(c) Constant dc voltage simplified model: ac side variables (dq-axis GSC current to the PCC bus, dq-axis PCC bus voltage, and real and reactive power to
PCC bus), Xg = 1.0 pu; (d) Constant input power simplified model: ac side variables (dq-axis GSC current to the PCC bus, dq-axis PCC bus voltage, and
real and reactive power to PCC bus), Xg = 0.96 pu.

where p is the size of perturbation and v
(1)
d (s) = v

(2)
q (s) =

p/s. The negative sign is due to the current direction as flowing
out of the PV.

The measurement point is close to the PCC bus. A small
impedance (e.g., 0.01 + j0.1 pu) is usually inserted between
the PCC bus and the measurement point.

First, 2% step change is applied to the d-axis voltage and
i
(1)
g,d, i(1)g,q are measured. Next, 2% step change is applied to the
q-axis voltage and i(2)g,d, i(2)g,q are measured.
i
(1)
g,d, i(1)g,q , i(2)g,d, i(2)g,q are fed into the toolbox for estimation.

The estimated currents by the toolbox are plotted along with
the original measured data in Fig. 3. The estimated system
order is defined as 18. Additionally, the sampling period is
0.25 second with 2 kHz sampling rate. The Bode plots of the
estimated admittance are shown as the solid lines in Fig. 4a.

Remarks: It can be seen that the time-domain data based
estimation and frequency scan method lead to very similar
admittance. In addition, frequency scan leads to admittance
measurements at those perturbed frequencies while the time-
domain data based method leads to an analytical model in s-
domain. The latter can be directly used for eigenvalue analysis.

B. s-domain admittance-based eigenvalue analysis
In the power grid industry, small-signal analysis is usually

conducted by examining the eigenvalues of linear models,
which are obtained from nonlinear dq-frame models through
numerical perturbation [29]. On the other hand, a system can
be divided into subsystems. With each subsystem viewed as
an admittance, the entire system may be viewed as a circuit
consisting of admittances. Stability analysis can be carried out
using the network admittance. The two approaches lead to the
same eigenvalues with benchmarking results presented in [30].

The system in Fig. 1 is viewed at the measuring point
with two shunt admittances: YGSC and Yg , where YGSC is the
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Fig. 3: Original measurement and the reconstructed signal using estimated
eigenvalues.

admittance of the subsystem at the left of the measurement
point and Yg is the Norton equivalent admittance of the grid
interconnection at the right of the measurement point.

Applying circuit analysis, it can be found the relationship
between the injected small current at the measuring point and
the voltage of the measuring point as follows.[

∆id,inj
∆iq,inj

]
= (YGSC + Yg)

[
∆vd
∆vq

]
(2)

If (2) is viewed as an input/output system, then the PCC
voltage is the output (notated as y) and the injected current is
the input (notated as u). Hence, the transfer function matrix
notated as G(s) from u to y is:

G(s) = (YGSC + Yg︸ ︷︷ ︸
Y

)−1 (3)
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where

Yg =

[
Rg + sLg −ω0Lg

ω0Lg Rg + sLg

]−1

,

and ω0 is the nominal frequency 377 rad/s.
Poles of G(s) are the eigenvalues of the system. In turn,

roots of det(Y ) or the zeros of the s-domain admittance
matrix Y are the eigenvalues of the system.The eigenvalues
of whole system can be found as the zeros of (YGSC + Yg).
The aforementioned eigenvalue analysis tool was proposed in
[17] by Semlyen and termed as s-domain admittance based
eigenvalue analysis. Most recently, this approach has been
adopted in [18], [31] for power grids with IBR penetrations.

By varying grid side admittance, the whole system eigen-
value trajectory can be found and presented in Fig. 4b. The
marginal condition Xg = 1.02 pu is accurately predicted and
corroborates with the simulation results in Fig. 2(a)(b).

III. SIMPLIFIED ANALYTICAL MODELS

VPCCI1

L1 R1

C1

Cdc

Ig

PV
Grid
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Rg Lg

DC-link GSC
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VC

Fig. 5: Per unit circuit diagram of a grid connected PV farm.

The simplified nonlinear analytical models are based on
a per unit circuit diagram shown in Fig. 5. Resistances and
inductances of the transformers and the transmission line are
aggregated into Rg and Lg , respectively.

A. DC side representation

The dc side dynamic has a coupling effect on ac side [32].
Thus, it is obvious that different dc side representations will

have affect on the admittance viewed from the ac side.
Besides constant input power assumption adopted in [7],

constant dc voltage assumption is examined. The circuit rep-
resentations are presented in Fig. 6. Fig. 6(a) presents the
constant input power assumption. In the case of constant input
power, the dc side is assumed to be a controllable current
source with its power Ppv given.

Fig. 6(b) is the constant dc voltage representation. The dc
side is treated as an equivalent circuit: a constant dc voltage
source behind an RLC circuit.
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Constant power model: The input power from PV dc side
to the dc-link is given as Ppv. The dc-link capacitor dynamic
can be expressed by (4).

Cdc

2

dV 2
dc

dt
= Ppv − Pconv (4)

where Ppv is a constant value, and Pconv is computed by the ac
side variables (converter output voltage vdq and current i1dq)
and Pconv = vdi1d + vqi1q in per unit. The block diagram
is presented in Fig. 7 (a). The output V 2

dc in per unit will be
fed into VSC control in the analytical model block diagram
in Fig. 9.
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Constant voltage model: The shunt capacitor Cpv can be
ignored if Cpv � Cdc. The dc-link capacitor dynamics and
the inductor dynamics can be expressed in (5) and (6). Fig.
7 (b) presents the block diagram for the constant dc voltage
source model.
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= IpvVdc − Pconv (5)
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= Vpv − Vdc − IpvRpv (6)
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Fig. 7: DC-side dynamics modeling. (a) Constant Ppv; (b) Constant Vpv.
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Fig. 8: The DC side admittance viewed from the dc-link bus. (a) The
measured frequency responses under different irradiance conditions from
the EMT testbed. (b) Simplified model frequency responses under different
assumptions.

To determine Rpv and Lpv, the admittance viewed at the
dc-link bus of the EMT testbed will be measured via the
sinusoidal harmonic injection. The dc side measurement point
(YDC) is marked in Fig. 1. The frequency responses are
shown by Bode plots in Fig. 8 (a) with the three dotted lines
representing three different irradiance conditions.
Rpv, Lpv, and Cpv are properly selected to fit the frequency

responses of the measured admittance. In Fig. 8 (b), the
constant voltage with Rpv = 0.42 Ω, Lpv = 0.003 H,
Cpv = 1e−4 F is adopted to represent the dc side system when
the irradiance is 1000 W/m2 or 800 W/m2, since those two
scenarios have very similar frequency responses. The constant
voltage with Rpv = 0.6Ω, Lpv = 0.003 H, and Cpv = 6e−5 F
is adopted to represent the dc side system when the irradiance
is 500 W/m2. They are listed in Table III. Notice that Cpv

is very small comparing to Cdc (0.0543 F), so Cpv can be
ignored in the simplified model.

TABLE III: The corresponding Rpv, Lpv, and Cpv regarding different
irradiance conditions

Irradiance
(detailed)

Constant voltage Rpv, Lpv

(simplified)
1000 W/m2 Rpv = 0.42 Ω, Lpv = 0.003 H, Cpv = 1e−4 F
800 W/m2 Rpv = 0.42 Ω, Lpv = 0.003 H, Cpv = 1e−4 F
500 W/m2 Rpv = 0.60 Ω, Lpv = 0.003 H, Cpv = 6e−5 F

As a comparison, the Bode plot of constant power assump-
tion is presented as the black dash-dot line in Fig. 8 (b). The
dc side can be viewed as a resistor under the constant dc power
source assumption:

∆Ppv = Vdc∆Idc + Idc∆Vdc = 0

Rpv = −∆Vdc
∆Idc

=
Vdc
Idc

,

where Idc is the dc current when the irradiance is 1000 W/m2.
Significant difference exists between this admittance and the
measured admittance.

B. Grid-connected VSC representation

Modeling of grid-connected VSC has been addressed in
the authors prior work, e.g., [5]–[7]. Brief explanation of the
modeling assumption is given in the following.

The block diagram of the dq-frame based model is shown
in Fig. 9. The two simplified models have orders of 14
(constant input power assumption) and 15 (constant dc voltage
assumption).

This dynamic model consists of a 6-order grid dynamic
block where two inductors and one shunt capacitor dynamics
are considered, a 2-order synchronous reference frame-based
PLL, a 4-order vector control, a 1-order voltage feedforward
low-pass filter and a 1-order (for constant power assumption)
or 2-order (for constant dc voltage assumption) dc side dy-
namics.

The grid-connected converter model is based on two dq ref-
erence frames: converter-based frame (denoted as superscript
c) for vector control and grid frame (denoted as superscript g)
for grid dynamics. At steady-state, the d-axis of the converter
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Fig. 10: Eigenvalues of simplified models where Xg varies form 0.5 to 1.10 pu, with each step 0.02 pu. (a) constant input power; (b) constant dc voltage.

frame aligns with the PCC voltage space vector, while the d-
axis of the grid frame aligns with the grid voltage space vector.
The converter frame is based on the PLL output angle. Thus,
the converter frame leads the grid frame by the PLL output
angle ∆θ.

More details on dq-frame based dynamic modeling, PLL
details for a grid-connected VSC in real power control and ac
voltage control mode can be found in the authors’ prior work
[5]–[7].

The converter control is based on the converter frame. In the
outer loop of the converter control, d-axis is for dc-link voltage
regulation while the q-axis is for ac voltage or reactive power
regulation. The dc-link voltage control generates d-axis current
reference ic∗1d while the voltage or var control generates q-axis
current reference ic∗1q . The inner current controls have faster
bandwidth to track the current orders. Current decoupling
feedforward [33] has been adopted in the inner control. The
q-axis voltage feedforward vcPCC,q with a voltage feedforward
filter (VFF) has been added in VSC control to enhance the
system stability.

The converter control leads to controllable dq-axis converter
output voltage in the converter frame. In the dynamic model
block diagram in Fig. 9, the converter is treated as controllable
voltage source for the circuit. This voltage source is converted
into a voltage source in the grid frame and fed into the grid

dynamics block. Outputs of the grid dynamics block are dq-
axis converter current and PCC voltage in the grid frame. In
turn, the PCC voltage phase angle ∆θPCC are also exported
to feed into the PLL block to generate the PLL angle ∆θ. ∆θ
is used as the input for frame conversion. Real and reactive
power of converter output may also be calibrated by the grid
dynamics block.

Remarks: Thus, the entire analytical model is built in dq-
frames. The model is a nonlinear model since no assumption of
linearization has been made. For example, power expressions
are nonlinear to voltage and currents; frame conversion uses
sine and cosine of the PLL output angle. At balanced operating
conditions, this model has state variables as constants at equi-
librium points. Numerical perturbation can be implemented to
easily extract the linearized models for small-signal analysis.

C. Comparison with the EMT testbed

Fig. 10 presents the loci of eigenvalues with a varying Xg .
It can be seen that the dominant 7.8 Hz mode moves towards
the right half plane (RHP) when Xg increases or the grid
becomes weaker. Thus, both of the two simplified models
can demonstrate low-frequency oscillations due to weak grid
interconnection. The constant input power model identifies
Xg = 0.96 pu as the marginal condition, while the constant
dc voltage model identifies Xg = 1.02 pu as the marginal



8

-800 -600 -400 -200 0

Real Axis (sec
-1

)

-400

-300

-200

-100

0

100

200

300

400

Im
a
g
in

a
ry

 A
x
is

 (
H

z
)

1

2

3

5

7

4

(a)

-100 -50 0 50

Real Axis (sec
-1

)

-20

-15

-10

-5

0

5

10

15

20

Im
a
g
in

a
ry

 A
x
is

 (
H

z
) 7

8 10

12

11

9

(b)

Fig. 11: Constant dc voltage model’s eigenvalues when Xg = 1.0 pu. (b) is the zoom-in of the low-frequency modes in (a).

condition. Note that the detailed model indicates that 1.02
pu is the marginal condition. The prediction of the constant
dc voltage model is the same as that from the s-domain
admittance-based eigenvalue analysis in Fig. 4b.
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Fig. 12: Time-domain dynamic responses of line tripping in the EMT testbed
and the constant voltage model. (a) Xg steps from 1.20 to 1.30 p.u. Blue
line: irradiance at 800 W/m2 in the EMT testbed. Red line: Rpv = 0.42 Ω,
Lpv = 0.003 H in the simplified model. (b) Xg steps from 2.00 to 2.19 p.u.
Blue line: irradiance at 500 W/m2 in the EMT testbed. Red line: Rpv = 0.6Ω,
Lpv = 0.003 H in the simplified model.

Dynamic simulation with irradiance at 1000 W/m2 is carried
out using the simplified models. Fig. 2 (c)(d) present the
constant dc voltage model ’s and constant input power model’s
dynamic responses at the corresponding marginal conditions
(Xg at 1.00 pu and 0.96 pu, respectively). The dynamic
event is a small change in the PCC voltage order. It can
be seen that 7 ∼ 8 Hz oscillations appear in both models.
Furthermore, another two irradiance conditions are examined
using constant voltage simplified model and the simulation
results line tripping events are presented in Fig. 12.

Finally, frequency-domain responses of the two simplified
models and EMT detailed model are compared. The Bode
plots are presented in Fig. 4a. It can be seen that the two
simplified models and the detailed model have comparable
frequency-domain responses, especially in the low-frequency

range. Among the two simplified models, the constant dc
voltage model is more similar to the EMT detailed model.
It is found that the qq component of the admittance (Yqq)
shows notable difference in magnitude and phase angle near
10 Hz for the constant input power model and the detailed
EMT model. That is due to the dc side frequency responses
mismatching shown in Fig. 8 (b).

Remarks: Based on comparison of time-domain simula-
tion results, eigenvalue-based stability analysis results, and
frequency-domain responses of admittances, it is found that
the 15th-order constant dc voltage model is more accurate for
low-frequency oscillation analysis.

IV. EIGENVALUE AND PARTICIPATION FACTOR ANALYSIS

In this section, eigenvalue and participation factor analysis
is conducted for the simplified model with constant dc voltage
assumption. Fig. 11 gives an overall eigenvalue plot for
the constant dc voltage model at the marginal condition of
Xg = 1 pu. The system has 15 eigenvalues with ten complex
conjugate eigenvalues denoting five oscillation modes. These
ten eigenvalues are noted as λi, where i = 1, · · · , 10. Among
them, λ9 and λ10 notate the an oscillation mode of 7.4 Hz
close to the imaginary axis.

The participation factor table for the constant power model
is presented in Table IV. The participation factor table for the
constant voltage model is presented in Table V for the five
modes. Those two models have very similar participation fac-
tor analysis results. In Table V, the leftmost column notates the
15 state variables. Those participation factors with relatively
large values are highlighted in bold. Based on the participation
factor table, Table VI lists the most relevant factors for the five
oscillation modes.

The two high-frequency (> 100 Hz ) modes λ1,2, λ3,4 are
mainly due to grid LC dynamics. Note that VFF influences
these two modes. The 58.5 Hz mode λ5,6 is mainly related to
grid dynamics and VFF. The two low-frequency modes λ7,8
at 7.5 Hz λ9,10 at 7.8 Hz are influenced by the outer controls
and PLL.

Remarks: The participation factor analysis of the dom-
inant oscillation mode at 7.8 Hz indicates that this mode
is influenced by the PLL and the VSC outer controls. In
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TABLE IV: Participation factor table for the constant dc power model.

State Variable λ1,2 λ3,4 λ5,6 λ7,8 λ9,10
V 2
dc 0.0002 0.037 0.029 0.2526 0.246
ig1d 0.3633 0.0752 0.0994 0.0208 0.0035
ig1q 0.1343 0.17 0.1163 0.0476 0.0059
iggd 0.0471 0.1446 0.2865 0.0589 0.0146
iggq 0.0186 0.2851 0.5107 0.1092 0.0385

vgPCC,d 0.3731 0.1568 0.1199 0.0293 0.0105
vgPCC,q 0.1117 0.3075 0.1035 0.0167 0.0043
θ 0.0117 0.0095 0.1064 0.7867 0.3109

∆ω 0.0001 0.0003 0.0066 0.3591 0.1335
VFF 0.164 0.1187 0.433 0.0912 0.0392
Vdc PI 0 0.0043 0.0078 0.5153 0.2217
VPCC PI 0.0018 0.014 0.1143 0.638 0.3596

q-axis current PI 0.0012 0.0014 0.0182 0.017 0.0118
d-axis current PI 0.0001 0.0012 0.0097 0.0536 0.0086

TABLE V: Participation factor table for the constant dc voltage model

State Variable λ1,2 λ3,4 λ5,6 λ7,8 λ9,10
V 2
dc 0.0002 0.0391 0.0353 0.4985 0.2519
ig1d 0.3832 0.0612 0.0968 0.0135 0.0047
ig1q 0.1146 0.1605 0.1207 0.0481 0.0087
iggd 0.0469 0.1242 0.3302 0.0546 0.0193
iggq 0.0161 0.3067 0.4698 0.1089 0.0482

vgPCC,d 0.3892 0.1344 0.1207 0.0333 0.0134
vgPCC,q 0.0943 0.3279 0.1049 0.0195 0.0029
θ 0.0118 0.0100 0.1061 0.5326 0.3930

∆ω 0.0001 0.0003 0.0066 0.1787 0.1694
VFF 0.1646 0.1192 0.4271 0.1413 0.0526
Vdc PI 0.0000 0.0046 0.0093 0.4236 0.1708
VPCC PI 0.0018 0.0152 0.1170 0.4449 0.4296

q-axis current PI 0.0012 0.0015 0.0182 0.0205 0.0159
d-axis current PI 0.0000 0.0003 0.0016 0.4607 0.0710

Ipv 0.0001 0.0013 0.0101 0.0420 0.0063

TABLE VI: Constant dc voltage model’s eigenvalues and influencing factors
Modes Eigenvalue Freq. (Hz) Most relevant factors
λ1,2 −830.2 ± j2207.4 351.3 LC dynamics
λ3,4 −98.5 ± j841.0 133.8 LC dynamics
λ5,6 −87.0 ± j368.1 58.5 VFF and grid dynamics
λ7,8 −73.9 ± j47.70 7.5 Outer control and PLL
λ9,10 −0.8 ± j49.2 7.8 Outer control and PLL

addition, this mode moves to the RHP when the grid becomes
weaker. The characteristics of the low-frequency oscillation
mode identified using the simplified model indeed matches
the existing knowledge on low-frequency oscillations due to
VSC in weak grids. To this end, the proposed 15th-order model
fulfills the goal of providing both time-domain simulation and
small-signal stability analysis for low-frequency oscillations
due to weak grid interconnection.

V. CONCLUSION

In this paper, two state-space models are proposed to repre-
sent a grid-connected PV system for low-frequency oscillation
analysis. The two models simplify the dc side of the PV
system with two different assumptions: constant input power
and constant dc voltage. Those two models are compared with
an EMT testbed with full details on time-domain simulation
results, frequency-domain responses of admittance models,
and eigenvalue analysis results. The comparison indicates
that the constant voltage model can accurately capture the

low-frequency oscillation dynamics at weak grid conditions.
Influencing factors of low-frequency oscillations are identified
as grid strength, PLL, and inverter’s outer controls.
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