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Abstract—Phase-locked-loops (PLLs) are the most common
synchronization units used for integration of voltage source
converters to the power grid. One of such type of PLL is a
single phase elementary PLL which is inherently nonlinear. The
standard approach of Linear Time Invariant (LTI) modelling
generally ignores this nonlinear behaviour. So, to accurately
model the PLL with nonlinearity included, Linear Time Periodic
(LTP) framework is adopted. In this paper, first the method
of extracting LTP model of a single phase elementary PLL
is illustrated, then the LTI model is developed from the LTP
model by expanding the time periodic quantities into complex
Fourier series. The two models obtained are simulated in MAT-
LAB / Simulink. Bode plots are also used to obtain the output
variable. The results obtained are subsequently validated with
the nonlinear PLL model.

Index Terms—Harmonic analysis, harmonic transfer function,
linear time invariant (LTI) systems, linear time periodic (LTP)
systems, phase-locked-loop (PLL), power electronics, single phase
systems, voltage source converters

I. INTRODUCTION

Power electronics based distributed energy resources
(DERs) have gained a tremendous popularity for alternative
source of power generation and delivery. Stability issues have
been observed for inverter-based resource grid integration [1],
[2], [3]. Traditionally, modelling of such power electronics
based converters [4], is generally done with the help of LTI
approach, which usually ignores high-order harmonics while
preserving only the fundamental components. Hence, a precise
harmonic analysis is required to the system with high-order
harmonics included.

To accurately capture these higher order harmonics for
steady state analysis, LTP based modelling framework is quite
useful. LTP based modelling was introduced by Werely [5],
with an objective of analysing time periodic systems, by
mapping the LTP model to a LTI model. With, the introduction
of harmonics of the state variables, LTP model provided an
accurate picture of the nonlinear system. Same approach is
used in [6], [7], [8] to obtain the harmonic state space model
of power electronics based converters.

One of the key elements of grid connected power converters
is PLLs, which enables the efficient and reliable integration of
power converters to the grid. One such kind of PLL is the sin-
gle phase elementary PLL and is widely used in the integration

of single phase converters to the grid. The aforementioned PLL
suffers from the problem of double frequency [9], [10]. This
double frequency is of particular interest and not captured for
analysis using the traditional LTI modelling [11], [12].

The objective of this paper is:
1) To illustrate the procedure to derive of LTP model of

single phase elementary PLL.
2) To map the obtained the LTP model to LTI model.
3) To validate the two models obtained with the nonlinear

model of the PLL.
The rest of the paper is organised as follows. Section II and
Section III are a brief introduction of single phase elementary
PLL and Harmonic State Space modelling respectively. Sec-
tion IV illustrates the LTP modelling of the PLL. Section V
establishes the LTI Model of the PLL. Section VI demon-
strates the simulation results for the two models obtained
and their validation with nonlinear model of the PLL, in
MATLAB/Simulink. Section VII concludes the paper.

II. SINGLE PHASE ELEMENTARY PLL

PLLs are the most common synchronization units used for
integration of voltage source converters to the power grid. The
major objective of this unit is to synchronize the converter
with the grid. In this paper, an elementary single phase PLL
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Fig. 1: Block diagram of single phase elementary PLL.

is presented and its models will be investigated [13].
The basic block diagram representation of an elementary PLL
is shown in Fig. 1, where the three fundamental parts of any
typical PLL (a) Phase Detector (PD), (b) Loop Filter (LF), and
(c) Voltage Controlled Oscillator (VCO) are also highlighted.

For analysis, the input applied to the PLL is adopted as:

vα(t) = V̂ sin(ω0 t) (1)

where, ω0 is the fundamental frequency in rad/s, and V̂ is the
peak magnitude of the input voltage signal.



III. REVIEW OF HARMONIC STATE SPACE MODEL

In this section the concept of Harmonic State Space (HSS)
modelling as discussed in [5] is outlined. On the same lines
as the LTI system, the LTP system’s dynamic equations can
be represented as:

˙x(t) = A(t)x(t) +B(t)u(t) (2)

y(t) = C(t)x(t) +D(t)u(t) (3)

where, A(t), B(t), C(t) and D(t) are time-periodic matrices.
For dynamic analysis of such systems, harmonic balance
method [14] is used, which refers to the series expansion of the
periodic parts of the solution as complex Fourier series. Now,
we can assume general format of x(t) as an exponentially
modulated periodic signal:

x(t) =

∞∑
n=−∞

Xn e
st ej nω0 t (4)

where, s is a complex number, and Xn is the complex
Fourier’s coefficient, which is time invariant in nature. In a
similar way y(t) and u(t) are defined. The dynamic matrix in
(2)-(3) can be expanded in a complex Fourier series,

A(t) =

∞∑
m=−∞

Am e
j mω0 t (5)

and similarly for B(t), C(t) and D(t).
Using (4)-(5), in (2) and (3), the LTP state space model can
be mapped to a LTI system as:

(s+ jnω0)Xn =

∞∑
m=−∞

An−mXm +

∞∑
m=−∞

Bn−mUm (6)

Yn =

∞∑
m=−∞

Cn−mXm +

∞∑
m=−∞

Dn−mUm (7)

Further simplification of (6) and (7) can be done as:

sX = (A−N)X + BU (8)
Y = CX + DU (9)

where, A, B, C, and D are the Toeplitz matrices of the
Fourier coefficient of time periodic A(t), B(t), C(t) and D(t)
respectively and N represents a diagonal matrix that contains
the information about the various frequencies.

A. Harmonic Transfer Function

Equations (8) and (9) are also used to determine the
Harmonic Transfer Function” for the system represented by
(2) and (3). The ”Harmonic Transfer Function” (HTF), which
is represented as G(s) is an infinite dimensional matrix of
Fourier coefficients, that describes the harmonic input-output
relationship [5].
HTF can be expressed as:

G(s) = C [s I −A + N ]−1 B + D (10)
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Fig. 2: Block diagram of single phase elementary PLL, adopted for LTP
modelling.

IV. LTP MODELLING

For obtaining the LTP model of the single phase elementary
PLL, the block diagram as shown in Fig. 2 is adopted, and
the input signal to the PLL is given as:

vα(t) = V̂ sin(ω0 t + ∆ θ) (11)

where, ∆ θ represents small perturbation in the input signal.
States x1 and x2 are notated in Fig. 2. The output signal
generated is represented as:

vβ(t) = V̂ ′ cos(ω0 t + ∆ θ′) (12)

where, ∆ θ′ represents small deviation in the output signal
due to perturbation in the input and V̂ ′ is the estimated peak
magnitude of the output voltage signal.
The phase error signal can be expressed as:

e(t) = vα(t)× vβ(t) (13)

e(t) = (V̂ sin(ω0 t + ∆ θ))× V̂ ′ cos(ω0 t + ∆ θ′)

e(t) =
V̂ V̂ ′

2
[ sin(2ω0 t+ ∆ θ + ∆ θ′) + sin(∆ θ + ∆ θ′) ]

(14)

Assuming the perturbations to be small, (14) can be expressed
in terms of Taylor’s series as,

e(t) ≈ V̂ V̂ ′

2
[ sin(2ω0 t) + cos(2ω0 t) (∆ θ + ∆ θ′)

+(∆ θ −∆ θ′)]

e(t) ≈ V̂ V̂ ′

2
[ sin(2ω0 t) + (cos(2ω0 t) + 1) (∆ θ)

+ (cos(2ω0 t)− 1) (∆ θ′)]

(15)

The differential equations for states x1 and x2 (Fig. 2) can be
expressed as:

ẋ1(t) = ki e(t) (16)
ẋ2(t) = x1 + kp e(t) (17)



kp and ki are proportional and integral gain of the PI controller
respectively. For simplicity, assuming V̂ ≈ V̂ ′.
Using (15), (16) and (17) becomes:

ẋ1(t) = ki
V̂

2
[cos(2ω0 t)− 1]x2 +

ki
V

2
[cos(2ω0 t) + 1]u+ ki

V̂

2
[ sin(2ω0 t)]

(18)

ẋ2(t) = x2 + kp
V̂

2
[cos(2ω0 t)− 1]x2+

kp
V

2
[cos(2ω0 t) + 1]u+ ki

V̂

2
[ sin(2ω0 t)]

(19)

A. Output variable

To complete the state space modelling, output variable (y) is
selected as ∆ω, which is the small deviation of the frequency
(in rad/s) from the operating frequency of ω0. Again, referring
to Fig. 2, output variable can be expressed as:

y(t) = x1 + kp e(t) (20)

Using (15), (20) can be transformed as:

y(t) = x1 + kp
V̂

2
[cos(2ω0 t)− 1]x2+

kp
V

2
[cos(2ω0 t) + 1]u+ kp

V̂

2
[ sin(2ω0 t)]

(21)

B. State Space Equations

From (18), (19) and (21), the state space equations can be
formulated as:

[
ẋ1
ẋ2

]
=

A(t)︷ ︸︸ ︷[
0 ki

V̂
2 [cos(2ω0 t)− 1]

1 kp
V̂
2 [cos(2ω0 t)− 1]

] x(t)︷ ︸︸ ︷[
x1
x2

]
+

B(t)︷ ︸︸ ︷
V̂

2
[cos(2ω0 t) + 1]

[
kp
ki

]
u +

r1(t)︷ ︸︸ ︷
V̂

2
[sin(2ω0 t)]

[
kp
ki

]
(22)

y(t) =

C(t)︷ ︸︸ ︷[
1 kp

V̂
2 (cos(2ω0)− 1)

]
+

D(t)︷ ︸︸ ︷
kp[

V̂

2
(cos(2ω0) + 1)] +

r2(t)︷ ︸︸ ︷
kp
V̂

2
[sin(2ω0 t)]

(23)

From (22)-(23), it is noticeable that matrices A(t), B(t), C(t)
and D(t) are time-periodic with a period of T/2, where T (=
2π/ω0) is the fundamental time period. The matrix r1(t) and
r2(t) are the noise matrix. Therefore, (22) and (23) represents
the complete LTP model of an elementary single phase PLL.

V. LTI MODELLING

As outlined in section III, for extracting LTI model promptly
from the LTP model expressed in (22) and (23), the periodic
terms are expanded using complex Fourier coefficients. For
analysis in this paper, state variables are assumed to have three
frequency components i.e. 0 Hz, and ± 120 Hz, while input
(∆ θ) is just a DC variable, and are represented in (24) and
(25) respectively.

x(t) = X0 +X2 e
j 2 ω0 t +X−2 e

−j 2 ω0 t (24)
u(t) = U0 (25)

where X0 and X±2 are the time invariant complex Fourier co-
efficients of x(t). Relating (24) and (25) to (4), the expression
of x(t) and u(t) can further be written as:

es tx(t) = X0 e
s t +X2 e

(s+j 2 ω0) t +X−2 e
(s−j 2 ω0 )t

es tu(t) = U0 e
s t

(26)
Similarly, the time periodic terms, y(t) is expressed.

A. LTI System Formation

Using (26) in (2) and (3), the LTI system is formed as
follows:
sX0 = (A0X0 +A2X−2 +A−2X2) +B0 U0 +R1,(0)

(s+ j2ω0)X2 = (A0X2 +A2X0) +B2 U0 +R1,(2)

(s− j2ω0)X−2 = (A0X−2 +A−2X0) +B−2 U0 +R1,(−2)
(27)

Similarly, output variable y can be defined as:

Y0 = (C0X0 + C2X−2 + C−2X2) +D0 U0 +R2,(0)

Y2 = (C0X2 + C2X0) +D2 U0 +R2,(2)

Y−2 = (C0X−2 + C−2X0) + C−2 U0 +R2,(−2)

(28)

Re-arranging (27) and (28) in matrix format:

s

X−2X0

X2

 =

( A︷ ︸︸ ︷A0 A−2 0
A2 A0 A−2
0 A2 A0

−
N︷ ︸︸ ︷−2jω0

0
2jω0

)×
X−2X0

X2

+

B︷ ︸︸ ︷B−2B0

B2

U0 +

R1︷ ︸︸ ︷R1,(−2)
R1,(0)

R1,(2)


(29)Y−2Y0

Y2

 =
( C︷ ︸︸ ︷C0 C−2 0

C2 C0 C−2
0 C2 C0

)X−2X0

X2

+

D︷ ︸︸ ︷D−2D0

D2

U0 +

R2︷ ︸︸ ︷R2,(−2)
R2,(0)

R2,(2)


(30)

In (29) and (30), A, B, C, D, R1 and R2 are Toeplitz
matrices, as described in Section III. Therefore, (29) and



B0 =
V̂

2

[
ki
kp

]
, B2 = B−2 =

V̂

4

[
ki
kp

]
C0 =

[
1 − kp V̂2

]
, C2 = C−2 =

[
1 kp

V̂
4

]
D0 = kp

V̂

2
, D2 = D−2 = kp

V̂

4
(33)

R1,(0) = 0, R1,(2) =
V̂

4 j

[
ki
kp

]
, R1,(−2) = − V̂

4 j

[
ki
kp

]
R2,(0) = 0, R2,(2) = kp

V̂

4 j
, R2,(−2) = −kp

V̂

4 j
(34)

(30) completes the mapping of LTP model of single phase
elementary PLL to LTI system. From (22), matrix A(t) is a
time periodic in nature. In a similar way as (24), A(t) is equal
to:

A(t) = A0 +A2 e
j 2 ω0 t +A−2 e

−j 2 ω0 t (31)

where, A0, A2 andA−2 are complex Fourier coefficients at 0
Hz and ±120 Hz respectively. Now, to extract these terms,
A(t) is expressed as:

A(t) =

A0︷ ︸︸ ︷[
0 −ki V̂2
1 −kp V̂2

]
+

A2︷ ︸︸ ︷
1

2

[
0 ki

V̂
2

0 kp
V̂
2

]
ej 2 ω0 t +

A−2︷ ︸︸ ︷
1

2

[
0 ki

V̂
2

0 kp
V̂
2

]
e−j 2 ω0 t

(32)

In the analogous fashion as provided in (31) and (32), other
time periodic dynamic matrices in (22) and (23) can be
defined. The Fourier coefficients for B(t), C(t), D(t), r1(t)
and r2(t) are expressed in (33)-(34) at top of this page.
Note: X−2 is a (2 × 1) column vector, which represents

complex Fourier coefficients of x1 and x2 at −120 Hz i.e..[
X−2

]
=

[
X1, (−2)
X2, (−2)

]
(35)

In a similar manner, X0 and X2 are defined.[
X0

]
=

[
X1, (0)

X2, (0)

]
,
[
X2

]
=

[
X1, (2)

X2, (2)

]
VI. SIMULATION AND RESULTS

In this section, state space models obtained previously are
simulated using MATLAB / Simulink, and are bench-marked
with nonlinear model of single phase elementary PLL (Fig. 2).
For nonlinear model, parameters kpd and kV CO are considered
as unity. A step change is applied to the input u (= ∆θ) at t
= 0.5s of 10° (Fig. 3). The parameters used in the simulation
are listed in Table I.

TABLE I: Parameters used for Simulations

S.No Parameter Value
1 V̂ 1 p.u
2 kp 60
3 ki 1400
4 f0 60 Hz
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Fig. 3: Step change in the input u = ∆θ, at t = 0.5 s.

Fig. 4: Performance of LTP Model compared to the nonlinear model, when a
phase jump of 10° is introduced.

A. Simulation results from LTP Model

The step response for LTP model and nonlinear model is
shown in Fig. 4. It is noticeable from the plots in Fig. 4 that,
LTP model and nonlinear model corroborates.

B. Simulation Results from LTI Model

For the LTI model, the states and the output variables are
in the form of complex Fourier coefficients. The step change
response of the LTI system obtained in Section V, is shown in
Fig. 5 and Fig. 6. The plots shown are the absolute value of
the complex Fourier coefficients (for 0 Hz and ±120 Hz) for
X and Y .

For validation, FFT was performed on states x1, x2 and y in
the nonlinear model. Using FFT, magnitude and phase angle
were extracted for x1, x2 and y for 0 Hz and 120 Hz. With the



TABLE II: Comparison of Fourier coefficients between LTI model and nonlinear model at steady state.

Harmonics Fourier Coefficients LTI Model Nonlinear Model

-120 Hz
X1 0.488 159.5◦ 0.464 157.8◦

X2 0.021 161.27◦ 0.0199 159.8◦

Y 15.806 71.269◦ 15.01 69.55◦

0 Hz
X1 0 0
X2 0.154 0◦ 0.1546 0◦

Y 0 0

120 Hz
X1 0.488 −159.5◦ 0.464 −157.8◦

X2 0.021 161.27◦ 0.0199 −159.8◦

Y 15.806 −71.269◦ 15.01 −69.55◦
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Fig. 5: Absolute value of the complex Fourier coefficients of X .
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Fig. 6: Absolute value of the complex Fourier coefficients of Y .

help of magnitude and phase angle information, time domain
signal is formulated:

f(t) = A cos(nω0 t+ α) (36)

where, A and α are the magnitude and phase obtained from
the FFT plots respectively and n is the harmonic order (= 0,
2).
Now, expanding (35) in complex Fourier series format:

f(t) =
A

2

(
ej (nω0 t+α) + e−j (nω0 t+α)

)

f(t) = A

F(n)︷ ︸︸ ︷(
ej α

2

)
ej nω0 t +A

F(−n)︷ ︸︸ ︷(
e−j α

2

)
e−j nω0 t

(37)

The comparison of Fourier coefficients are listed in Table II.
It can be observed from Fig. 6 and Table II, that the Fourier
coefficients obtained from LTI model and the nonlinear model
verify.

C. Validation of output Y using Bode Plots

The state space model presented in (29) and (30), can be
used to obtain input-output relationship, as presented below:

sX = (A−N)X + BU + R1 (38)
Y = CX + DU + R2 (39)

From, (38) and using (40) in (39)

X(s) = (s I −A + N)−1(B U0 + R1) (40)

Y(s) =

G(s)︷ ︸︸ ︷
[C (s I −A + N)−1 B + D)] U0 +

C (s I −A + N)−1 R1 + R2

(41)

From (41), it can be observed that Y (s) has two parts:

Y1(s) = G(s)U0 (42)

Y2(s) = C (s I −A + N)−1 R1 + R2 (43)

where, G(s) is the harmonic transfer function. In this section,
bode plots for G(s) and Y2(s) are presented in Fig.9.
To validate the results with the non-linear model, Y (s) is
extracted using (42) and (43) for a input step change of 10°
(i.e. U0 = 0.1745 radians).
From bode plots of G(s) and Y2(s) magnitude and phase
angle information is obtained at frequency close to 0 Hz. Then
the phasor for Y can be formulated as:

|Y (j ω)|]Y (j ω) = |Y1(j ω)|]Y1(j ω) + |Y2(j ω)|]Y2(j ω)
(44)

for ω → 0 Hz. The results are listed in Table III. The results
obtained from bode plots are compared with complex Fourier
coefficients of Y obtained from the non-linear model are
presented in Table IV. It can be observed that the results
obtained from the non-linear model and frequency domain
approach are a close match.

TABLE III: Magnitude and Phase values Y1, Y2 and Y at frequency close to
0 Hz

Harmonics Y1 Y2 Y
-120 Hz 0.527 −0.509◦ 14.96 90.6◦ 15.8194 70.58◦

0 Hz ≈ 0 90◦ ≈ 0 −90◦ ≈ 0
120 Hz 0.5.27 0.509◦ 14.96 −90.6◦ 15.8194 −70.58◦
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(a) Bode plot of G(s) for -120 Hz component.
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(b) Bode plot of G(s) for 0 Hz component.
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(c) Bode plot of G(s) for 120 Hz component.
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(d) Bode plot of Y2(s) for -120 Hz component.
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(e) Bode plot of Y2(s) for 0 Hz component.
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(f) Bode plot of Y2(s) for 120 Hz component.

Fig. 7: Bode plots for G(s) (harmonic transfer function) and Y2(s), for 0 and ±120 Hz complex Fourier coefficients.

TABLE IV: Comparison of complex Fourier coefficients of Y obtained from
bode plots and nonlinear model

Harmonics Bode Plots Non-Linear Model
-120 Hz 15.8194 70.58◦ 15.01 69.55◦

0 Hz ≈ 0 0
120 Hz 15.8194 −70.58◦ 15.01 −69.55◦

VII. CONCLUSION

This paper illustrated the procedure of deriving of LTP
model of single phase elementary PLL. After developing
the LTP model, using the concept of complex Fourier series
and harmonic balance method, the time varying system was
transferred to time in-varying system, so as to develop the LTI
model of the PLL. With the LTI model at disposal, the analysis
can be done using the conventional LTI techniques. The two
models obtained were simulated using MATALB/Simulink,
and a phase jump in the input side was also introduced for
observing the dynamic response. Bode plots showing input-
output relationship are presented in this paper, for extracting
the output variable for input step change. The results obtained
were validated with the nonlinear model of the PLL.
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