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Abstract—The objective of this research is to identify oscil-
lation modes from real-world measurement data captured by
phasor measurement units (PMUs) and make distinction of
their characteristics. To this end, dynamic mode decomposition
(DMD) is applied. This paper improves DMD performance by
data stacking. This enables DMD to accurately identify system
eigenvalues and reconstruct signals in the time-evolving format.
While data stacking raises the computation cost, we further
implement a randomization technique for DMD to radically
reduce the size of the data matrix. The randomized DMD (rDMD)
is shown to achieve both efficiency in computing and accuracy in
mode identification. PMU data from three real-world oscillation
events are used for demonstration.

Index Terms—Power system oscillations, system identification,
dynamic mode decomposition, randomized technique, real-world
event.

I. INTRODUCTION

POWER system inter-area oscillation is an electromechan-
ical behavior that exists in any interconnection system

that contains more than a synchronous generator. Even with
the regular operation, oscillations are found in the electric grid
due to mundane actions such as load change. Oscillations with
poor or negative damping could result in blackout. One such
example is the August 1996 west system inter-area oscillations
[1]. With PMUs installed, many oscillation events have been
recorded by PMUs [2]. The communication structure of wide-
area monitoring system (WAMS) can be centralized and
decentralized. The latter strategy has higher efficiency and
reliability [3]. An IEEE PES task force on oscillation source
location was formed in 2016 with test cases from real-world
events collected and available at public domain [4], [5].

To identify oscillation modes, several data-driven methods
have been utilized for power system events: Prony [6], [7],
[8], Matrix Pencil [9], [7], Eigensystem Realization Algorithm
(ERA) [10], Koopman Analysis [11], and Variable Projection
Method [12].

In the 2012 IEEE PES taskforce report on electromechanical
mode identification [13], three methods for ringdown signals:
Prony, Matrix Pencil, and ERA methods, were presented.
Reference [14] further compares the three methods on their
similarity, including data matrix formulation and noise han-
dling relying on singular value decomposition (SVD). Case
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studies on two real-world events taken from [4] show ERA
has the best performance in eigenvalue identification accuracy.

A more recent method called dynamic mode decomposition
(DMD) has been proposed and applied in fluid community
[15] in 2010. The DMD algorithm has been used in diverse
applications such as brain modelling, fluid experiments, fore-
ground/background video separation, flows around a high-
speed train, and financial trading strategies [16].

DMD is applied in power systems for oscillation analysis in
[17]. The authors show that DMD is more efficient than both
Koopman and Prony in identifying dynamical modes and their
spatial and temporal characteristics. Reference [18] visualizes
the identified modes to approach more intuitive dynamical
attributes. In decentralized WAMS structure, [19] successfully
circumvents high-dimensional data processing using DMD
Compressed Sensing that selects the most observable PMUs.

In the authors’ prior work [20], DMD is applied to identify
the dynamics matrix for an RLC circuit using measurement
data and identify a signal’s frequency components and mag-
nitudes. The latter application achieves the same function as
fast Fourier transformation (FFT). DMD and ERA have been
compared in [20] to show that they achieve similar level of
accuracy. The DMD extracts distortion harmonic components
of microgrids [21]. Reference [22] enhances the performance
of the extended DMD under noisy measurements.

For practical interest, besides eigenvalue identification, dis-
tinction of the oscillation mode as local or inter-area is desired.
If the definition of the state variables is known, mode shape
or eigenvector can lead to more information regarding who is
contributing to the oscillation.

Compared to several other methods that rely on Hankel
matrices, e.g., Prony analysis, Matrix Pencil, and ERA, DMD
has a unique advantage: state variables have clear physical
definition. Thus the mode shape information from the system
matrix A leads to physical interpretation of how measurement
influences an oscillation mode. Matrix Pencil and Prony anal-
ysis do not lead to system matrix A. Though ERA leads to a
state matrix, the state variables are unknown.

DMD decomposes high-dimensional data into spatial and
temporal structures. Essentially, DMD carries out eigen-
decomposition for a data matrix. Hence, a data matrix can
be factorized into two components: spatial and temporal. The
dynamic system model can be found by keeping the dominant
spatiotemporal structures which are identified using dominant
singular values. This feature also helps to obtain reduced-order
model which keeps only dominant eigenvalues. The future
state may be predicted using the identified eigenvalues and
initial states.
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The scope of this paper is to use DMD from real-world
PMU data to identify oscillation modes and distinct their
nature using mode shape.

The contribution of this paper is three-fold.
• Compared to the major reference on DMD application

in power system oscillation analysis [17], this paper
improves DMD implementation in signal reconstruction
and DMD’s performance in accuracy. (i) We not only
implemented DMD to identify eigenvalues from PMU
measurements, but also reconstructed signals and can pre-
dict signals at any time t. This is realized by carrying out
one more step to represent a data matrix’s time evolving
characteristics. (ii) DMD’s performance is improved by
data stacking technique. Accuracy in eigenvalue identi-
fication and measurement signal reconstruction has been
greatly improved. Comparison of without and with data
stacking technique is presented in this paper.

• With data stacking technique, the row dimension of the
data matrix increases significantly. This causes more com-
puting cost. We implement randomization technique into
DMD [23] and radically reduce the matrix dimension.
In turn, computing efficiency of DMD-based oscillation
modal identification has been greatly improved.

• Relying on synchrophasor measurements collected by
a region from scattered locations, distinction between
system wide oscillation mode and regional oscillation
mode can be made based on identified mode shapes
associated with the measurements at different locations.
PMU measurements from real-world oscillation events
were used for this research. The analysis results match the
knowledge of those real-world oscillations. The proposed
method has been compared with the existing methods that
are Prony, Matrix Pencil, and ERA in case studies.

The rest of this paper is organized as follows. Section II
reviews DMD and points out the difference of data matrix
reconstruction in this paper and [17]. Section III presents
Randomized Dynamic Mode Decomposition (rDMD). The
DMD and rDMD are implemented on real-world event data
analysis in Section IV. Section V concludes the paper.

II. DYNAMIC MODE DECOMPOSITION

In linear or linearized dynamic system, the dynamics matrix,
A ∈ Rn×n, maps the snapshot xk to the subsequent snapshot
xk+1 as

xk+1 = Axk. (1)

where x ∈ Rn. The time interval between two consecutive
snapshots is ∆t.

Applying eigen-decomposition to matrix A = ΦΛΦ−1

leads to

xk+1 = ΦΛΦ−1xk = ΦΛ2Φ
−1

xk−1 = · · · = ΦΛk Φ−1x1︸ ︷︷ ︸
b

.

(2)
where b ∈ Cn×1, Φ ∈ Cn×n is the right eigenvector matrix
of A, and Λ is a diagonal matrix with elements as λi, i =
1, · · · , n.

Equation (2) can also be written as follows.

xk+1 =
n∑

j=1

φjλ
k
j bj , (3)

The time-domain expression of x(t) can also be constructed
using the eigenvalues and eigenvectors of A.

x(t) =
n∑

j=1

φje
ωjtbj = ΦeΩtb. (4)

where Ω is a diagonal matrix that contains the continuous-
eigenvalues, ωj . The relationship between the discrete and
continuous eigenvalue is ωj = ln (λj) /∆t.

The eigenvector matrix Φ, the eigenvalue matrix Λ, and
the initial state projected to the eigenvector basis b will all be
identified from the measurement data by DMD.

In DMD, a data matrix X is constructed to contain state for
m snapshots with equal time-intervals.

X =

 | | |
x1 x2 · · · xm

| | |

 . (5)

X can be expressed using (2):

X = Φ
[

b Λb · · · Λmb
]
. (6)

In (6), multiplication of a diagonal matrix Λ with a column
vector b is equivalent to diag (b) col(Λ). Hence, (6) can be
expressed:

X =

 | |
φ1 φ2 · · ·
| |

diag(b)

 1 λ1 · · · λm1
1 λ2 · · · λm2
...

...
. . .

...

 .
(7)

It has to be noted that while eigenvalues and Φ were
identified in [17], identification b was not carried out. In [17],
the data matrix X is decomposed as X = ΦΛΓ (Equation (28)
of [17]). Though Λ has been identified, the time-evolving char-
acteristics have not been explicitly identified. Thus, prediction
of state at a future time is not possible.

In the following, the procedure of identifying Φ, Λ, and b
from X is given.

First, the collected snapshots of measurements are gathered
in two sequential overlapping sets that one of them is time-
shifted, as follows.

Xm−1
1 =

 | | |
x1 x2 · · · xm−1
| | |

 , (8a)

Xm
2 =

 | | |
x2 x3 · · · xm

| | |

 , (8b)

where Xm−1
1 ∈ Rn×(m−1), Xm

2 ∈ Rn×(m−1). The subscript
and superscript refer to the first and last measurement snap-
shots in set, respectively. It can be seen that

Xm
2 = AXm−1

1 .
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A can be found as

A = Xm
2 (Xm−1

1 )†, (9)

where superscript † notates Moore-Penrose pseudo inverse that
is mathematically evaluated as X† = (XTX)−1XT , where the
superscript T refers to the transpose. To avoid dealing with
inverse of a large-size matrix, Singular Value Decomposition
(SVD) is adopted for Xm−1

1 . In addition, a rank r will be
chosen for rank reduction. Hence,

Xm−1
1 ≈ UΣV∗, (10)

where U ∈ Rn×r,Σ ∈ Rr×r, and V ∈ R(m−1)×r, and ∗
denotes the complex conjugate transpose. U and V are unitary
matrices, they satisfy U∗U = I and V∗V = I.

It can be found from (10) that the pseudo-inverse of Xm−1
1

can be expressed as:

(Xm−1
1 )† ≈ VΣ−1U∗. (11)

Hence, according to (9), A can be expressed as follows.

A = Xm
2 VΣ−1U∗, (12)

A low-dimensional dynamics matrix Ã is realized by pro-
jecting A onto U basis:

Ã = U∗AU = U∗Xm
2 VΣ−1, (13)

where Ã ∈ Rr×r. The low-rank dynamical model becomes:

x̃k+1 = Ãx̃k. (14)

where x̃ = U∗x and x̃ ∈ Rr.
The full-rank state vector can be recovered by xk = Ux̃k.
Next, the eigendecomposition of the low-dimensional dy-

namics matrix Ã is carried out.

ÃW = WΛ, (15)

where Λ ∈ Cr×r, and W ∈ Cr×r. The diagonal entries of Λ
are the eigenvalues, and the columns of W are the eigenvec-
tors. While Λ is associated to both Ã and A, W is associated
to only Ã. The eigenvectors of the high-dimensional dynamics
matrix A are recovered as follows

Φ = UW, (16)

where Φ ∈ Cn×r. Finally, b, is computed as

b = Φ†x1, (17)

where b ∈ Cr×1. The standard DMD procedure is summarized
in Algorithm 1.

Algorithm 1 Dynamic Mode Decomposition

Input: X = [ x1 x2 x3 . . . xm] ∈ Rn×m.
Output: Φ ∈ Cn×r, Λ ∈ Cr×r, W ∈ Cr×r, b ∈ Cr×1.

1: X1 ← [ x1 x2 x3 . . . xm−1], X1 ∈ Rn×(m−1),
X2 ← [ x2 x3 x4 . . . xm], X2 ∈ Rn×(m−1).

2: [U,Σ,V] = svd ( X1) ,
U ∈ Rn×r,Σ ∈ Rr×r,V ∈ R(m−1)×r.

3: Ã← U∗X2VΣ−1, Ã ∈ Rr×r

4: [W,Λ] = eig(Ã).
5: Φ← UW.
6: b← Φ†x1.

A. Data Stacking

Suppose that there is one measurement channel. The data
matrix X will be a row vector. This certainly makes estimation
difficult. To construct a data matrix, stacking technique is
used to obtain a data matrix X with a higher row dimension.
Augmenting the data in shift-stacking and time-delay matrix
ensures more accurate solution [16]. Moreover, data stacking
increases the dimension of the measurement matrix that helps
capture more information from the data. The general data
multi-channel form is set as follows.

Xaug =


X

m−(s−1)
1

X
m−(s−2)
2

...
Xm

s



=


x1 x2 · · · xm−(s−1)
x2 x3 · · · xm−(s−2)
...

...
. . .

...
xs xs+1 · · · xm


(18)

where Xaug ∈ Rs·n×(m−s+1), and s is the stacking number.
The DMD algorithm splits the augmented data into two
overlapping sets:

Xaug,1 = Xaug(:, 1 : m− s) (19a)
Xaug,2 = Xaug(:, 2 : m− s+ 1) (19b)

where Xaug,1, Xaug,2 ∈ Rs·n×(m−s). It can be seen that

Xaug,2 = diag([A, · · · ,A])Xaug,1.

With the two new data matrices, the same DMD procedure
can be carried out for modal analysis.

III. RANDOMIZED TECHNIQUE AND DMD

Our research on real-world event data shows that to achieve
accuracy, the number s for data stacking is selected to be 30
- 40% of the measurement snapshots number. This number
may be greater than 200. This results in large data matrices.
Data handling requires more computing time. For computing
efficiency, in this paper, randomized DMD will be imple-
mented. The objective is to replace the large-scale data matrix
Xaug ∈ R(s·n)×(m−s+1) by a matrix with a smaller row
dimension.

A. Randomization Method

The process of the presented randomization method is to
build a new small data matrix that reflects the original data
matrix with adequate quality. The randomization technique
we employ was proposed by Halko et al. [24]. It consists of
two stages: stage A and stage B. Moreover, two additional
approaches (oversampling and power iteration scheme) are
implemented to ensure the reduced data set has high quality.
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1) Stage A: For the given data matrix, X ∈ Rn×m, and
the target rank k � min(m,n), we seek to find the optimal
orthonormal basis Q ∈ Rn×k that holds:

X ≈ Q Q∗X︸ ︷︷ ︸
H

. (20)

H ∈ Rk×m will be used to represent X.
First, the column space of X is sampled. The sampling

proceeds by projecting the original high-dimensional data onto
a random matrix:

Y = XΨ, (21)

where Ψ ∈ Rm×k is a normal Gaussian distribution matrix. Y
is a set of linearly independent vectors that span in the range
of X. Consequently, the optimal basis Q can be efficiently
achieved by means of QR-decomposition such that

Y = QR. (22)

2) Stage B: Given the optimal basis Q, the small data
matrix H ∈ Rk×m is obtained by projecting the original
matrix, X, onto the computed basis Q

H = Q∗X. (23)

It is worth mentioning that the original data matrix, X, is
preserved; it can be recovered as follows

X ≈ QH. (24)

3) Oversampling: to ensure the column space of Q spans
in X with high probability, extra samples are added from the
measurements via the random matrix. Therefore, we have Ψ ∈
Rm×l, where l = k+p. The parameter k is the rank of X and
p denotes the extra samples. Reference [24] suggests setting p
to 5 or 10 is sufficient to achieve correct results. In our case
studies, we set p = 10.

4) Power Iteration Scheme: in case the data matrix, X, has
a slowly decaying singular value spectrum, the quality of the
basis Q declines. The power iteration scheme dramatically
fastens the singular value spectrum decaying [23]. Power
iteration scheme is implemented as follows.

Y =
(
(XX∗)

q
X
)
Ψ, (25)

where q is an integer number that represents the power
iterations. Although the cases in this paper have high noises,
setting q = 2 leads a sufficiently fast singular value spectrum.
Higher value of q conveys a more accurate solution, but
at the cost of extra computation. If X is factorized using
SVD and X = UΣV∗, then (25) becomes the following:
Y =

(
(XX∗)

q
X
)
Ψ = UΣ2q+1V∗Ψ. The randomized

technique is demonstrated in Algorithm 2.

Algorithm 2 Randomized technique [23]

Input: X ∈ Rn×m, k � min(m,n), p, q
Output: H ∈ Rl×m, Q ∈ Rn×l

1: l← k + p
2: Ψ← rand(m, l)
3: Y ← XΨ, Y ∈ Rn×l

4: for k = 1, . . . , q do
5: [Q,∼] = qr(Y)
6: [Z,∼] = qr(X∗Q)
7: Y = XZ
8: end for
9: [Q,∼] = qr(Y)

10: H← Q∗X

B. Randomized DMD

While data stacking improves DMD performance, it in-
creases the computation cost. This section provides computa-
tion enhancement to the algorithm process. The methodology
relies on including the randomization technique into the DMD
steps. This method is proposed by Erichson et al. [23]. The
result of the rDMD matches standard DMD. The rDMD is
implemented after computing the optimal orthonormal basis
Q from Algorithm 2. The high-dimensional measurement
snapshots are projected onto Q as follows.

h1,h2, . . . ,hm := Q∗x1,Q
∗x2, . . . ,Q

∗xm ∈ Rl. (26)

The new low-dimensional snapshots are gathered into two
overlapping matrices just as in (8)

Hm−1
1 =

 | | |
h1 h2 · · · hm−1
| | |

 , (27a)

Hm
2 =

 | | |
h2 h3 · · · hm

| | |

 , (27b)

where Hm−1
1 , Hm

2 ∈ l× (m− 1). Then, the dynamics matrix
that maps the two low-dimensional sets is computed using
least-squares estimation:

Ah = Hm
2 (Hm−1

1 )†

= Hm
2 VΣ−1U∗,

(28)

where Ah ∈ Rl×l , U ∈ Rl×k,Σ ∈ Rk×k, and V ∈
R(m−1)×k. U,Σ, and V are the truncated SVD components
of H1

(m−1). Ah is projected onto U basis to make it even
smaller:

Ãh = U∗AhU = U∗Hm
2 VΣ−1, (29)

where Ãh ∈ Rk×k. Next, the eigendecomposition is imple-
mented to obtain the system eigenvalues and eigenvectors:

ÃhWh = WhΛh, (30)

where Λh ∈ Ck×k, and Wh ∈ Ck×k. The DMD modes are
recovered as

Φh = QUWh, (31)
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TABLE I: Real-world event descriptions.

Case # Date PMU Type Frequency (Hz)
1 June 17, 2016 ISO-NE System-wide mode 0.27
2 Oct 3, 2017 ISO-NE Wide-spread 0.08, 0.15 0.31
3 Jul. 20, 2017 ISO-NE Regional 1.13

where Φh ∈ Cn×k. The vector mode amplitudes, bh, is
evaluated as

bh = Φh
†Qh1, (32)

where bh ∈ Ck×1. The randomized dynamic mode decompo-
sition is outlined in Algorithm 3.

Algorithm 3 Randomized Dynamic Mode Decomposition

Input: H = [ h1 h2 h3 . . . hm] ∈ Rl×m, Q ∈ Rn×l

Output: Φh ∈ Cn×k, Λh ∈ Ck×k, Wh ∈ Ck×k, bh ∈
Ck×1.

1: H1 ← [ h1 h2 h3 . . . hm−1], H1 ∈ Rl×m−1,
H2 ← [ h2 h3 h4 . . . hh], H2 ∈ Rl×m−1.

2: [U,Σ,V] = svd ( H1) ,
U ∈ Rl×k,Σ ∈ Rk×k,V ∈ Rm−1×k.

3: Ãh ← U∗H2VΣ−1, Ãh ∈ Rk×k

4: [Wh,Λh] = eig(Ãh).
5: Φh ← QUWh.
6: bh ← Φh

†Qh1.

In the following section, DMD and rDMD will be demon-
strated on real-world event data analysis. All calculations were
performed in MATLAB on a laptop with an Intel Core i7 CPU
and 16Gb of memory.

IV. REAL-WORLD OSCILLATION EVENT CASE STUDIES

This section presents implementation of DMD and rDMD
on three real-world oscillation events. These events occurred
in ISO New England, a North-East part of the Eastern Inter-
connection in the U.S., shown in Fig. 1. The ISO New England
has peak load of 26,000 MW. Data and brief descriptions of
the three events are from Test Cases Library of Power System
Sustained Oscillations [5]. The sampling period, ∆t, is 0.033
second. Table I presents the three events descriptions from [5].

Fig. 2 present the voltage magnitudes during the events
recorded by PMUs.

A. Oscillation Event 1

On June 17, 2016, an emergency shutdown due to control
failure of a nuclear reactor occurred in the Grand Gulf Nuclear
Station that is in Area 2. The cause of the failure was hydraulic
control valve malfunctioning. As a result, 65 percent of the
power load was dropped of the system, and a forced oscillation
frequency around 0.28 Hz was imposed in the system for
about 45 minutes [25]. 32 of the PMUs recorded the event,
the voltage magnitude signals are shown in Fig. 2a.

Data from 40 to 60 seconds are used for analysis. Without
shift-stacking, the DMD is unable to identify the system and
reconstruct the signals, as shown in Fig. 3a. Shift-stacking
the event data enables the DMD to accurately identify the
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Fig. 1: The ISO New England map [5].

TABLE II: Real-World Event 1: Computation Details

Event 1: Voltage Magnitudes DMD rDMD

Matrix Dimension 8000×456 26×456

Computation Time (s) 0.2282 0.0079

system modes and reconstruct the signals from the DMD’s
components, as shown in Fig. 3b. For this case, excellent
matching of reconstructed and original signals is achieved
with the shift-stacking number s at 250. The data matrix’s
dimension changes from (32 × 705) to (8000 × 456) that is
from (n × m) to (n · s × m − s + 1). The proposed rDMD
reduces the size to (26× 456), which is (k+ p×m− s+ 1),
while analysis accuracy is preserved.

The randomized decomposition computation time is 0.0165
s. The DMD and rDMD computation details are shown in
Table II.

Since the measurement data are expected to be corrupted
by noises, we examine the singular value energies before
we truncate the model through the SVD elements. Fig. 4
shows the Event 1 singular value energies and cumulative
energies. Setting the DMD rank to 16 holds 99.95% of the
data information. Consequently, both the DMD and rDMD
identify 16 eigenvalues that are shown Fig. 5.

The DMD spectrum determines the dominant modes in the
analyzed system; for this case, the DMD spectrum is shown
in Fig. 6. The dominant oscillation mode is at 0.28 Hz, which
matches NERC report [25].

B. Oscillation Event 2

On October 3, 2017 inter-area oscillations of 0.08 Hz, 0.15
Hz, and 0.31 Hz initiated and dispersed in the New England
power system. The oscillations source was at an external area
(Area 3), where an issue had occurred on a large generator
governor. The oscillations lasted in the network for about 5
minutes. For this case, 23 of the PMUs captured the event,
the voltage magnitude measurements are shown in Fig. 2b.
Both DMD and rDMD are implemented on a time window
from 250s to 280s for all the given PMU voltage magnitude
signals.

The DMD without shift-stacking the data is incapable to
identify the event and reconstruct the signals, as appeared in
Fig. 7a. On the other hand, the DMD with shift-stacking the
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Fig. 2: Phase-to-ground voltage magnitudes during the oscillatory events.

data has the ability to identify and reconstruct the signals, as
shown in Fig. 7b. The analyzed data size is (22 × 910). The
DMD reconstructed signals match the original signals with a
stack number s = 350. The randomized decomposition com-
putation time is 0.0358 s. The DMD and rDMD computation
details are shown in Table III.
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Fig. 3: Comparison of data stacking for Event 1.
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TABLE III: Real-World Event 2: Computation Details

Event 2: Voltage Magnitudes DMD rDMD

Matrix Dimension 7700×561 40×561

Computation Time (s) 0.3008 0.0107

For this case, the cumulative energy of the first 30 of the
singular values is 99.94%. By comparison with Event 1 case
in which the first 16 of the singular values have a cumulative
energy of 99.95%, one can conclude that Event 2 includes
more dynamics and noises than Event 1. According to the
singular values, the DMD rank is set to 30. Therefore, the
DMD and rDMD identify 30 eigenvalues that are shown in
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TABLE IV: Real-World Event 3: Algorithm Computation Time

Algorithm rDMD DMD MP Prony ERA

Time (s) 0.0769 0.1467 0.7310 1.8357 2.3675

Fig. 8. They show a close match.
The Event 2 DMD spectrum, shown in Fig. 9, indicates

that the event dominant modes are 0.0833 Hz, 0.1489 Hz, and
0.3056 Hz. The identified modes have frequencies agreeing
with the info in Table I.

C. Oscillation Event 3: Comparison with classical methods

On July 20, 2017, a disturbance in a large generator initiated
growing regional oscillations in Area 1. The number of the
PMUs that recorded the event is 35, the voltage magnitude
measurements are shown in Fig. 2c. In this case study, we
show a comparison between the DMD/rDMD and the classical
identification methods that are Prony, Matrix Pencil (MP),
and ERA. The analyzed ringdown response is the voltage
magnitude from 51 to 65 second. The signal reconstruction
of the tested methods are compared with PMU voltage in
Fig. 10. The data matrix has 20 effective singular values
and correspondingly the rank of all the tested methods is 20.
The mismatching error of all of the algorithms are shown in
Fig. 11, and their computation times are in Table IV. It can
be seen that the mismatching errors of DMD and rDMD are
the lowest, which indicates DMD and rDMD lead to most
accurate reconstructed signals.

D. Mode shape analysis for the dominant mode of Event 1
and Event 3

Mode shape analysis based on frequency measurements
has been used in the industry to distinct oscillation type,
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Fig. 7: Comparison of data stacking for Event 2 signal reconstruction. (a)
Without stacking. (b) With data stacking.
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Fig. 8: Event 2: Eigenvalues identified by DMD and rDMD.

e.g., [25]. In this subsection, frequency measurements will
be used for DMD analysis and further mode shape (φi of
the ith mode) of the dominant modes will be plotted for
oscillation type analysis. Fig. 12a and Fig. 12b present the
frequency measurements of the two events used for DMD
analysis. For Event 1, 20 seconds data are used while for Event
3, 40 seconds data are used. Randomized DMD successfully
identifies eigenvalues and the reconstructed signals are also
shown in Fig. 12a and Fig. 12b.

The dominant mode of Event 1 is the 0.28 Hz mode which
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has been also identified using the voltage magnitude data while
the dominant mode of Event 3 is a 1.14 Hz mode. A complete
s-domain eigenvalue location plot based on Event 3 data is
shown in Fig. 13. The dominant mode is the 1.14 Hz mode.

Mode shapes corresponding to the dominant mode for each
event are plotted in Fig. 14. It can be seen that for Event
1 for the 0.28 Hz mode, mode shapes corresponding to the
substations at New England have almost the same angles. That
is, for this mode, the entire New England can be treated as a
single generator. This mode is indeed an inter-area oscillation

Event 3: The Difference of Actual and Reconstructed Signals
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Fig. 11: Event 3: Algorithm reconstruction signal error.
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Fig. 12: (12a) Event 1 frequency measurement and reconstructed signals. Rank
is assumed as 16. Data stacking number is 350. (12b Event 3 frequency
measurement and reconstructed signals. Rank is assumed as 20 and data
stacking number is 550.

mode. On the other hand, mode shape plot of the 1.14 Hz
mode of Event 3 indicates that the mode shape vectors of New
England substations are not contained in a cone with a small
angle. Rather, the angles are quite different. [5] identified the
dominant mode of Event 3 as a regional mode. This feature
is also confirmed by Fig. 14b.

V. CONCLUSION

In this paper, DMD is implemented in real-world inter-area
oscillation event analysis to identify the oscillation modes and
distinct their nature. This paper improves DMD for modal
analysis of power grids in two aspects: enhanced accuracy
and reduced computing cost. Enhanced accuracy is achieved
by the use of data shift-stacking technique, which results in a
data matrix with a much larger size. To reduce computing cost,
randomized linear algebra technique creates a new data matrix
with much less row dimension while having data information
preserved. The resulting randomized DMD is implemented in
this paper for oscillation analysis. Three real-world oscillation
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Fig. 14: (a) Event 1 0.28 Hz mode’s mode shape. (b) Event 3 1.14 Hz mode’s
mode shape.

event data have been used for case studies to demonstrate the
excellent modal identification capability of rDMD.
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[11] Y. Susuki and I. Mezić, “Nonlinear koopman modes and power system
stability assessment without models,” IEEE Transactions on Power
Systems, vol. 29, no. 2, pp. 899–907, 2013.

[12] A. R. Borden and B. C. Lesieutre, “Variable projection method for power
system modal identification,” IEEE Transactions on Power Systems,
vol. 29, no. 6, pp. 2613–2620, 2014.

[13] M. Crow, M. Gibbard, A. Messina, J. Pierre, J. Sanchez-Gasca, D. Trud-
nowski, and D. Vowles, “Identification of electromechanical modes in
power systems,” IEEE Task Force Report, Special Publication TP462,
2012.

[14] A. Almunif, L. Fan, and Z. Miao, “A tutorial on data-driven eigenvalue
identification: Prony analysis, matrix pencil, and eigensystem realization
algorithm,” International Transactions on Electrical Energy Systems,
vol. 30, no. 4, p. e12283, 2020.

[15] P. J. Schmid, “Dynamic mode decomposition of numerical and experi-
mental data,” Journal of fluid mechanics, vol. 656, pp. 5–28, 2010.

[16] J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor, Dynamic
mode decomposition: data-driven modeling of complex systems. SIAM,
2016.

[17] E. Barocio, B. C. Pal, N. F. Thornhill, and A. R. Messina, “A dynamic
mode decomposition framework for global power system oscillation
analysis,” IEEE Transactions on Power Systems, vol. 30, no. 6, pp.
2902–2912, 2015.

[18] S. Mohapatra and T. J. Overbye, “Fast modal identification, monitoring,
and visualization for large-scale power systems using dynamic mode de-
composition,” in 2016 Power Systems Computation Conference (PSCC).
IEEE, 2016, pp. 1–7.

[19] J. J. Ramos and J. N. Kutz, “Dynamic mode decomposition and sparse
measurements for characterization and monitoring of power system
disturbances,” arXiv preprint arXiv:1906.03544, 2019.

[20] A. Alassaf and L. Fan, “Dynamic mode decomposition in various
power system applications,” in 2019 North American Power Symposium
(NAPS), 2019, pp. 1–6.

[21] A. Saldaña, E. Barocio, A. Messina, J. Ramos, R. J. Segundo, and
G. Tinajero, “Monitoring harmonic distortion in microgrids using dy-
namic mode decomposition,” in 2017 IEEE Power & Energy Society
General Meeting. IEEE, 2017, pp. 1–5.

[22] P. Sharma, B. Huang, V. Ajjarapu, and U. Vaidya, “Data-driven identifi-
cation and prediction of power system dynamics using linear operators,”
in 2019 IEEE Power & Energy Society General Meeting (PESGM).
IEEE, 2019, pp. 1–5.

[23] N. B. Erichson, L. Mathelin, J. N. Kutz, and S. L. Brunton, “Randomized
dynamic mode decomposition,” SIAM Journal on Applied Dynamical
Systems, vol. 18, no. 4, pp. 1867–1891, 2019.

[24] N. Halko, P.-G. Martinsson, and J. A. Tropp, “Finding structure with
randomness: Probabilistic algorithms for constructing approximate ma-
trix decompositions,” SIAM review, vol. 53, no. 2, pp. 217–288, 2011.

[25] NERC. Interconnection oscillation analysis reliability assessment ,
july 2019. https://www.nerc.com/comm/PC/SMSResourcesDocuments/
\Interconnection Oscillation Analysis.pdf,

Authorized licensed use limited to: University of South Florida. Downloaded on September 04,2020 at 20:11:20 UTC from IEEE Xplore.  Restrictions apply. 

http://web.eecs.utk.edu/~kaisun/Oscillation/actualcases.html
http://web.eecs.utk.edu/~kaisun/Oscillation/actualcases.html
https://www.nerc.com/comm/PC/SMSResourcesDocuments/\ Interconnection_Oscillation_Analysis.pdf
https://www.nerc.com/comm/PC/SMSResourcesDocuments/\ Interconnection_Oscillation_Analysis.pdf


0885-8950 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2020.3012419, IEEE
Transactions on Power Systems

10

Abdullah Alassaf (S’15) received the B.S. degree
in electrical engineering from the University of Hail,
Hail, Saudi Arabia, in 2013, and the M.S. degree in
electrical engineering from the University of South
Florida, Tampa, FL in 2017, where he is currently
working toward the Ph.D. degree. He is with the
Department of Electrical Engineering, University of
Hail, Saudi Arabia,. His current research interests
include power system dynamics and control.

Lingling Fan (SM’08) received the B.S. and M.S.
degrees in electrical engineering from Southeast
University, Nanjing, China, in 1994 and 1997, re-
spectively, and the Ph.D. degree in electrical engi-
neering from West Virginia University, Morgantown,
in 2001.

Currently, she is an Associate Professor with the
University of South Florida, Tampa, where she has
been since 2009. She was a Senior Engineer in
the Transmission Asset Management Department,
Midwest ISO, St. Paul, MN, form 2001 to 2007, and

an Assistant Professor with North Dakota State University, Fargo, from 2007
to 2009. Her research interests include power systems and power electronics.
Dr. Fan serves as the editor-in-chief for IEEE Electrification Magazine and
an editor for IEEE transactions on Energy Conversion.

Authorized licensed use limited to: University of South Florida. Downloaded on September 04,2020 at 20:11:20 UTC from IEEE Xplore.  Restrictions apply. 


