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Abstract
Semidefinite programming (SDP) relaxation offers a tight relaxation to non-
convex alternating current optimal power flow (AC OPF) problems. When the
solution obtained from SDP relaxation of AC OPF is a rank-1 positive semidefi-
nite (PSD) matrix, this solution is exact to the original problem. Research efforts
have been devoted to find a rank-1 PSD matrix. In this paper, a nonlinear pro-
gramming formulation with the PSD matrix as the decision variable is proposed.
The rank-1 PSD matrix constraint is equivalent to all 2 × 2 minors of the PSD
matrix being zero. The main challenge of the proposed formulation is the large
number of the quadratic equality constraints. For a system of N buses, there are
C2
NC

2
N minor related constraints (For a 10-node system, this number is 2025).

Graph decomposition based approach is then implemented in this research to
decompose a power grid into radial lines and three-node cycles. Enforcing the
related sub-matrices PSD and rank-1 guarantees a full PSD rank-1 matrix. Case
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study results demonstrate that the proposed formulation can provide the similar
quality results with the original AC OPF formulation.

Keywords: Nonlinear programming, Convex relaxation, Exactness conditions,
AC optimal power flow.

1 Introduction

Alternating current optimal power flow (AC OPF) is a classic optimization prob-
lem in power systems1. The objective is to minimize generation cost and/or power
loss. Constraints are related to power grid physical characteristics (e.g., power
flow equations), component limits (e.g., generator capacity limits, transmission
line limits) as well as network operation limits (e.g., voltage limits). Depending
on the practical requirements, some extra constraints may be included, such as
security constraint2, or stability constraint3;4.

As the power flow equations are nonlinear, AC OPF is non-convex. Tradi-
tionally, nonlinear optimization solving methods, e.g., Newton-type method5 and
interior point method6, have been applied to solve the problem7. These meth-
ods essentially find a local optimal solution in the feasible region that satisfies the
first-order optimality condition8. Examples presented in8 indicate that local op-
tima could occur due to disconnected feasible regions, loop flow, an excess of real
or reactive power, or large difference in voltage angles across lines.

Global optimum means guaranteed least cost. In recent years, applying con-
vex relaxation techniques to solve AC OPF problem and find global minimum
has been carried out and a tutorial can be found in9;10. Relaxation problems find
the lower bound of the solution to AC OPF. The two major relaxation techniques
are semidefinite programming (SDP) relaxation, and second-order cone program-
ming (SOCP) relaxation. SDP relaxation was first applied to solve AC OPF in11.
SOCP relaxation was proposed in12 for radial networks. In radial networks, SOCP
relaxation and SDP relaxation are equivalent9.

Though it has been studied that SDP relaxation can give global optimum for
many IEEE test systems while the solutions are feasible to the original AC OPF
problems (termed as “SDP exact”) in13, in some other cases, SDP relaxation leads
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to inexact solutions for the original problem8;14;15. Thus, research efforts have
been devoted to achieve SDP exactness, e.g.,16;17.

The exactness conditions for SDP and SOCP relaxations are presented in9.
Some researches have been conducted to achieve exactness for convex relaxation
through exploiting the exactness conditions. In16;17, objective functions are mod-
ified to include penalty related to the rank-1 constraint. Reference18 treats an AC
OPF problem as an SDP relaxation problem and a non-convex rank-1 feasible re-
gion mapping problem. Alternating direction method of multipliers (ADMM) iter-
ative procedure is then applied. In19;20, the exactness constraints are reformulated
as quadratic minor constraints. The minor constraints are approximated as con-
vex constraints in19. A strengthened SOCP relaxation of AC OPF is then solved.
In20, the convex-hull descriptions of the minor constraints are examined and valid
inequalities are added for SDP relaxation. Reference21 proposes a convex itera-
tion algorithm to solve a convex problem with a regularization term related to the
maximal eigenvalue of the full PSD matrix. With the regularization term achiev-
ing zero, the solution achieves global minimum. In22, the non-convex OPF branch
flow equation is decomposed into SOCP constraint and a non-convex constraint
related to the difference of two convex functions. The concave term is then ap-
proximated by linear functions and updated in each iteration. A sequential convex
optimization method is implemented to carry out the iteration. The aforemen-
tioned approaches rely on convex relaxation formulations. In many cases, exact
solutions can be found after dealing the exactness condition. However, large gaps
are still observed for special cases17.

In this paper, we rely on nonlinear programming formulation with a PSD ma-
trix as the decision variable. We reformulate the rank-1 constraint as a set of
quadratic minor constraints. The idea of minor constraints has been mentioned
in19 and20. The research in19;20 obtains convex constraints to be used to tighten
the respective convex relaxation formulations. Different from the aforementioned
research, in this work, we will directly deal with all 2 × 2 minors and come up
with a nonlinear programming formulation.

Therefore, we aim to use the same decision variables of SOCP or SDP relax-
ation, but to solve a nonlinear optimization problem with exactness constraints
imposed. With the solution from SOCP or SDP relaxation as the starting point,
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nonlinear programming solvers may find a feasible solution.
Our contribution is two-fold. First, we formulate a nonlinear programming

problem of AC OPF based on a new set of decision variables instead of voltage
phasors. The new set of decision variables align with those in SDP/SOCP relax-
ation. In our formulation, rank-1 constraints are replaced by a set of quadratic
equality constraints representing all 2 × 2 minors equal to zeros. The challenge
of the formulation is that the number of those minors are very large. For a N -bus
power grid, there are a total C2

NC
2
N minors. Thus, our second contribution is to

employ graph decomposition technique to significantly reduce computational bur-
den. We first decompose a power network into lines and 3-node cycles. Instead
of considering all minors, only those minors related to lines and 3-node cycles are
considered. As a result, an alternative AC OPF formulation and the corresponding
solver are the final outcome.

This solver is tested on special cases with known large gaps between the lower
bound obtained from SDP relaxation and the upper bound obtained from MAT-
POWER using flat start. The solutions from the proposed formulation are the
same as those from MATPOWER.

The rest of the paper is organized as follows. In Section 2, we introduced the
SOCP and SDP relaxation formulations of the AC OPF. The exactness conditions
are presented and reformulated as 2 × 2 minors equal to zero. In Section 3, we
describe the cycle identification technique used for graph decomposition and the
proposed formulation of the problem. Case study is presented in Section 4. We
conclude this paper in Section 5.

2 SOCP/SDP relaxation of AC OPF and exactness
conditions

2.1 AC OPF Problem

First we describe the original formulation of AC OPF. Considering a power net-
work, we denote the buses as i ∈ N , the transmission line as (i, j) ∈ L and the
generators as i ∈ G. The admittance matrix is defined as Y where Y = G+jB, G
and B are the conductance matrix and the susceptance matrix, respectively. The



RANK-1 PSD MAXTRIX-BASED NLP FORMULATION FOR AC OPF 5

classic AC OPF problem is formulated as follows.

min
U,θ,Pg ,Qg

∑
k∈G

C2kP
2
gk + C1kPgk + C0k (1a)

P g
i − P d

i =
n∑

j∈Adji

UiUj(Gij cos θij +Bij sin θij), i ∈ N (1b)

Qg
i −Qd

i =
∑
j∈Adji

UiUj(Gij sin θij −Bij cos θij), i ∈ N (1c)

|Sij(U, θ)| ≤ Smax
ij , (i, j) ∈ L (1d)

Pmin
gi ≤ Pgi ≤ Pmax

gi , i ∈ G (1e)

Qmin
gi ≤ Qgi ≤ Qmax

gi , i ∈ G (1f)

Umin
i ≤ Ui ≤ Umax

i , i ∈ N (1g)

where C2k, C1k and C0k are the coefficients of the quadratic cost function for
the generator k, P g

i , Qg
i are the total generated active and reactive powers from

the generators connected at Bus i, P d
i , Qd

i are total demanded active and reactive
powers at Bus i, Adji is the set of the buses that have direct connection with Bus
i, U ∈ R|N | and θ ∈ R|N | are the voltage magnitude vector and angle vector,
respectively, Sij is the complex power flow on the transmission line from Bus i to
Bus j. |.| notates the cardinality of a set. The decision variables are {Pg, Qg, U, θ}
.

2.2 SOCP and SDP relaxation formulations

Define a Hermitian matrix X , and

X = Ū ŪH , (2)

where Ū is the voltage phasor vector, Ūi = Ui∠θi, and (.)H notates conjugate
transpose. Note that the rank of X is 1.

Each element of X is:

Xij = ŪiŪ
∗
j = UiUj cos(θi − θj) + jUiUj sin(θi − θj) (3)
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Notate the real and imaginary parts of Xij as Rij and −Iij .

Rij = Re(Xij) = UiUj cos(θi − θj) (4a)

Iij = Im(Xij) = −UiUj sin(θi − θj) (4b)

The following relationship should be satisfied.

R2
ij + I2ij = RiiRjj, or |Xij| =

√
XiiXjj (5)

If (5) is relaxed into an inequality constraint12, the resulting optimization prob-
lem in (6) based on R and I is the SOCP relaxation of (1).

min
Pg ,Qg ,R,I

∑
k∈G

C2kP
2
gk + C1kPgk + C0k (6a)

P g
i − P d

i =
∑
j∈Adji

(GijRij −BijIij), i ∈ N (6b)

Qg
i −Qd

i =
∑
j∈Adji

(−GijIij −BijRij), i ∈ N (6c)

|Sij(Rii, Rij, Iij)| ≤ Smax
ij , (i, j) ∈ L (6d)

Pmin
gi ≤ Pgi ≤ Pmax

gi , i ∈ G (6e)

Qmin
gi ≤ Qgi ≤ Qmax

gi , i ∈ G (6f)

(Umin
i )2 ≤ Rii ≤ (Umax

i )2, i ∈ N (6g)

R2
ij + I2ij ≤ RiiRjj, (i, j) ∈ L (6h)

For SDP relaxation, X is treated as a decision variable with its rank-1 constraint
relaxed11. SDP relaxation is presented in (7).

min
Pg ,Qg ,R,I,X

∑
k∈G

C2kP
2
gk + C1kPgk + C0k (7a)

s.t.Constraints:(6b) ∼ (6g)

Xij = Rij − jIij, (i, j) ∈ L (7b)

X � 0 (7c)
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where (.) � 0 denotes (.) is a PSD matrix.
In the above formulations, all U and θ in the variable set are replaced by Rij

and Iij . For a relaxation formulation, if its solution is feasible to the original AC
OPF problem, then the solution is exact. The exact conditions of SDP and SOCP
have been thoroughly discussed in9 and are presented as follows.

The exactness condition for SDP is the rank-1 constraint shown in (8).

X � 0, rank(X) = 1 (8)

For SOCP, the exactness conditions are:

R2
ij + I2ij = RiiRjj, or

∣∣∣∣∣Xii Xij

Xji Xjj

∣∣∣∣∣ = 0, for (i, j) ∈ L (9a)∑
(i,j)∈c

∠Xij = 0, c ∈ Ψ (9b)

where Ψ is the set of cycles in the power network.
Note that that the two exactness conditions (8) and (9) are exchangeable.

2.3 2× 2 Minor-based Rank-1 Constraints

To implement exactness constraints, we convert the constraints in (8) to minor
constraints19. The reformulation is based on Proposition 3.1 in19: a PSD matrix
X is rank 1 if and only if all its 2× 2 minors are zeros and the diagonal elements
of X are nonnegative. Note a m×m minor of the matrix X ∈ Cn×n is defined as
the submatrix of X by deleting n−m rows and n−m columns.

For example, suppose that for an Hermitian X , rows except i, l and columns
except j, k are eliminated. The resulting minor constraint is as follows
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∣∣∣∣∣Xij Xik

Xlj Xlk

∣∣∣∣∣ = 0

⇒ XijXlk −XikXlj = 0

Separating the real and imaginary parts leads to:

⇒

{
RijRlk − IijIlk −RljRik + IljIik = 0

IijRlk −RijIlk − IljRik −RljIik = 0
(10)

Thus we may find all 2 × 2 minors of the SDP relaxation’s decision variable
X . The challenge is that the number of minors is large. The total number of minor
constraints in terms of X is C2

nC
2
n. Among them, C2

n are the number of the princi-
pal minors as shown in (9a). These minors can be expressed in R and I and there
are total C2

n constraints in the real domain. The rest minors are non-principal mi-
nors and each can be separated into two constraints in the real domain. Consider-
ing the Hermitian matrix’s feature (XT = X∗), we will have C2

nC
2
n−C2

n

2
constraints

to represent the non-principal 2×2 minors in the complex domain, or C2
nC

2
n−C2

n

non-principal minor constraints in the real domain. Note that the principal minor
constraints include the exactness constraints for every lines. Therefore, the total
number of constraints in real-domain related to all minors is C2

nC
2
n. For a 10-node

system, this number is 2025.
Instead of dealing with the full matrix X , we now examine the SOCP exact-

ness conditions. The first condition (9a) is related to each line. For a branch
connecting Bus i and Bus j, the exactness condition is to have the principal minor
related to i and j be zero. The next condition (9b) is the cycle constraint which
should be enforced for every cycles.

In the following, we will show the cycle constraint can be replaced by non-
principal minor constraints of each embedded 3-node cycle. There are three steps
to lead to the conclusion. The first step is to show an n-node cycle can be decom-
posed into (n − 2) 3-node cycles, the second step is to show that the exactness
conditions in (9a) and (9b) for a 3-node cycle indeed guarantees a PSD rank-1
matrix. Hence the conditions can be replaced by a set of 2× 2 minor constraints.
The third step is to show these minor constraints can be expressed as 9 quadratic
equality constraints in the real domain.
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The first step With (n − 3) virtual lines, any chordless cycle of n nodes can
be decomposed into (n− 2) 3-node cycles. The cycle constraint of the chordless
cycle will be replaced by (n− 2) cycle constraints related to those 3-node cycles.

4

3

2

5

7

9

1

6

8

FIGURE 1: One chordless cycle become 3-node cycles with virtual lines.

Fig. 1 shows one example power network for the decompose strategy. Three
virtual lines are added in the chordless cycle {4 → 9 → 8 → 7 → 6 → 5 → 4}.
There are now four 3-node cycles presented: {4, 5, 6}, {4, 6, 7}, {4, 7, 8}, and
{4, 8, 9}. In power grids, adding virtual lines is similar to claim that any two
nodes without direct line connection can be viewed as connected through a line
with infinite impedance. The numbers of virtual lines added for a n-node cycle is
(n− 3) and the number of the resulting 3-node cycles is (n− 2).

Obviously, if all 3-node cycles satisfy the cycle constraint (9b), the original
cycle condition can also be satisfied.

The second step Notate a 3 × 3 Hermitian matrix corresponding to a 3-node
cycle as Xc. We will show that the exactness conditions for SOCP relaxation
(9) related to a 3-node cycle is indeed equivalent to the corresponding matrix Xc

being PSD and rank-1.

Xc =

Xc11 Xc12 Xc13

Xc21 Xc22 Xc23

Xc31 Xc32 Xc33
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Its exactness condition is shown as follows.

Xcii ≥ 0, i = 1, 2, 3 (11a)

|Xcij| =
√
XciiXcjj, (i, j) ∈ {(1, 2), (2, 3), (3, 1)} (11b)

∠Xc12 + ∠Xc23 + ∠Xc31 = 0 (11c)

(11b) indicates that all 2× 2 principal minors equal to 0:

Xc11Xc22 = |Xc12|2 = |Xc21|2

Xc22Xc33 = |Xc23|2 = |Xc32|2

Xc11Xc33 = |Xc13|2 = |Xc31|2
(12)

Consider a non-principal minor M in Xc such as:

M = det

[
Xc21 Xc23

Xc31 Xc33

]
= Xc21Xc33 −Xc23Xc31

= |Xc21||Xc33|∠Xc21 − |Xc23||Xc31|(∠Xc23 + ∠Xc23)

According (12) and (11c), we can derive:

{
|Xc21||Xc33| = |Xc23||Xc31|
∠Xc21 = ∠Xc23 + ∠Xc23

⇒ |Xc21||Xc33|∠Xc21 = |Xc23||Xc31|(∠Xc23 + ∠Xc23)

⇒ M = 0

Through the similar processes, we can find all non-principal minors are zeros.
Since all 2 × 2 minors are 0, the rank of Xc is less than 2. And the diagonal
components of Xc are all greater than 0. Hence Xc is PSD and rank-1.

The third step Basing on the previous step and the Proposition 3.119, for each
3-node cycle, the exactness condition or Xc is PSD and rank-1 can be replaced by
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a set of quadratic minor constraints. The minor constraints ofXc can be expressed
as:

R2
ij + I2ij = RiiRjj, (i, j) ∈ {(1, 2), (2, 3), (3, 1)} (13a)

R12R23 − I12I23 −R22R13 = 0, (13b)

I12R23 +R12I23 −R22I13 = 0, (13c)

R23R13 + I23I13 −R33R12 = 0, (13d)

I23R13 −R23I13 +R33I12 = 0, (13e)

R13R12 + I13I12 −R11R23 = 0, (13f)

I13R12 −R13I12 −R11I23 = 0. (13g)

As a summary, for a power grid that has been decomposed into lines (the set
is notated as L), virtual lines (notated as LV), and 3-node cycles (notated as Ψ),
there will be |L| + |LV | constraints related to the principal minors, and 6 × |Ψ|
constraints related to non-principal minors. Take the example shown in Fig. 1,
the system has a total 9 lines with one 6-node chordless cycle. Three virtual lines
are added 4 − 6, 4 − 7, 4 − 8 to decompose the chordless cycle into 4 3-node
cycles. The system’s exactness constraints consist of 12 constraints related to the
12 principal minors corresponding to 12 lines (9 lines and 3 virtual lines) and
6 × 4 related to the non-principal minors. Total, there are 36 quadratic equality
constraints.

3 Rank-1 PSD Matrix-Based Nonlinear Program-
ming Formulation

In Section II, the exactness conditions have been converted to quadratic equality
constraints. A nonlinear programming problem can now be formulated with those
constraints. The next step is to identify cycles in a power network and decompose
any chordless cycle with size greater than 3 into 3-node cycles. With all virtual
lines and 3-node cycles identified, the nonlinear programming formulation can be
derived.
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3.1 Cycle Basis Identification

A cycle basis of a graph is the set of cycles with each cycle having only one of
its edges common with the spanning tree of the graph. We use the cycle iden-
tification algorithm in23 to identify the cycles. A MATLAB based toolbox24

is applied to find a cycle basis. The algorithm first searches a minimal span-
ning tree of the network and then adds the rest of the lines back one by one.
Each added line will be considered as a token to identify one cycle. For ex-
ample, consider the five buses network in Fig. 2, the set of the lines is L =

{(1, 2), (2, 3), (3, 4), (4, 5), (5, 1), (4, 1)}. To identify its cycles, first the cycle
identification algorithm will start from the minimal spanning tree in Fig. 3. This
spanning tree contains lines (1, 2), (2, 3), (1, 4), (1, 5). Next, the remaining lines
are added back one by one. After adding (3, 4), we obtain a cycle ca = {1− 2−
3− 4− 1}. After adding (4, 5), we get a cycle cb = {1− 4− 5− 1}.

1 2 3

45

1

23

4

5

6

FIGURE 2: Five-bus test case with two cycles. Cycle a: nodes {1, 2, 3, 4}, lines
{(1, 2), (2, 3), (3, 4), (4, 1)}; Cycle b: nodes {1, 4, 5}, lines {(1, 4), (4, 5), (5, 1)}.

0.5 1 1.5 2 2.5 3 3.5
0.5

1

1.5

2

2.5

3

3.5

  1

  2

  3

  4   5

FIGURE 3: Spanning tree of the five-bus test system.
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3.2 Nonlinear Programming Problem Formulation

Through the cycle identification algorithm and the graph decomposition process,
we obtain a set of virtual lines and 3-node cycles. The set of all lines includ-
ing virtual lines are notated as Lch = LV ∪ L. The proposed rank-1 nonlinear
programming formulation is as follows.

min
∑
k∈G

C2kP
2
gk + C1kPgk + C0k (14a)

P g
i − P d

i =
∑
j∈Adji

(GijRij −BijIij), i ∈ N (14b)

Qg
i −Qd

i =
∑
j∈Adji

(−GijIij −BijRij), i ∈ N (14c)

|Sij(Rii, Rij, Iij)| ≤ Smax
ij , (i, j) ∈ L (14d)

Pmin
gi ≤ Pgi ≤ Pmax

gi , i ∈ G (14e)

Qmin
gi ≤ Qgi ≤ Qmax

gi , i ∈ G (14f)

(Umin
i )2 ≤ Rii ≤ (Umax

i )2, i ∈ N (14g)

R2
ij + I2ij = RiiRjj, (i, j) ∈ Lch (14h)

For each 3 nodes cycle c = {i, j, k} ∈ Ψ

RijRjk − IijIjk −RjjRik = 0, (14i)

IijRjk +RijIjk −RjjIik = 0, (14j)

RjkRik + IjkIik −RkkRij = 0, (14k)

IjkRik −RjkIik +RkkIij = 0, (14l)

RikRij + IikIij −RiiRjk = 0, (14m)

IikRij −RikIij −RiiIjk = 0. (14n)

This problem is a quadratically constrained quadratic program (QCQP) prob-
lem with quadratic equality constraints (14h) to (14n). The problem can be solved
by nonlinear programming solvers, e.g., IPOPT.

Compared with MATPOWER, the decision variables in (14) are no longer
voltage phasors. Instead, R and I can be initialized using the solution of the PSD
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matrix X from a SDP relaxation AC OPF solver developed in25.

3.3 Voltage Recover Technique

The solution from (14) is a set of Rii, Rij , and Iij , or partial information of a PSD
matrix X . Voltage vectors can be recovered from the decision variables R and I .
Rii will be found for every bus. Rij and Iij are related to all lines and virtual lines.
we implement a voltage recovery method9 through visiting the spanning tree of
the network.

First, we define the phase angle of voltage phasor at the reference node as
0◦. We identify the spanning tree of the power network, and define path from the
reference node to the node i as Pi. Then the voltage phasor at any node i can be
recovered through the following equations.

Ui =
√
Rii

θi = −
∑

(j,k)∈Pi

∠(Rjk − jIjk)

4 Case studies

In this section, we present the case study results. Our numerical experiments were
performed on an Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30 GHZ (2 processors)
computer. All solvers are implemented on Matlab 2017a. The proposed non-
linear programming AC OPF formulation was implemented in MATLAB using
Yalmip and select IPOPT as the main solver. The configurations of the IPOPT
are: convergence tolerance is 1 × 10−7; maximum number of iteration is 10000;
update strategy for barrier parameter is “adaptive”; Hessian information is “limit-
memory”; and the other configurations are default.

To obtain the initial point for the nonlinear solver, we solve OPF problems
first through a CVX26 based sparse SOCP/SDP relaxation solver25. The objective
value of the SOCP/SDP solver and the maximal rank of the corresponding PSD
submatrices will be given for each test case. MATPOWER with IPOPT as the
solver is used for comparison.
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4.1 Test setup

In results tables, the column "Rank" list the maximal rank of all submatrices for
each case. For each submatrix, rank is counted by considering only the eigenval-
ues that are greater than the 0.001% of the maximal eigenvalue; N_vlines is the
number of the virtual lines; N_lines is the number of the original lines; N_cycle3
is the number of the 3-node cycles based on the decomposition results. Time is the
total CPU seconds in IPOPT to solve the problem. The Gap means the relaxation
gap which is calculated trough the following equation:

Gap =
UB −Obj

UB
× 100%

where UB is the Upper bound of the objective value which is calculated by
MATPOWER; Obj is the objective value which is computed through the corre-
spond method.

4.2 Results

We tested the proposed formulation on two sets of cases. The first set of cases
are chosen from the NICTA test archive27. Gaps of these cases are small or zeros.
The second set of cases are special cases which are modified to have large gaps.
These cases are selected from the test achieves which are provided by14 and8. The
related results are listed in the Table 1 and 2 respectively.

In Table 1, the results show that for all tested standard cases, our formula-
tion provides the same objective values as those from MATPOWER. In Table
2, we listed test results on modified cases. From the table, we can see that for
cases with large gaps, the proposed formulation is capable to obtain the same
objective value as MATPOWER . These results indicate that the proposed for-
mulation can provide similar quality results to the original ACOPF formulation
that is implemented in MATPOWER. Moreover, according the number of 3-node
cycles, we can see the improvement on the number of the added equality con-
straints. For example, in "nesta_case57_ieee", N_vlines= 55, N_lines= 78,
N_cycle3= 77, which means the number of the added equality constraints are
77 × 6 + 78 + 55 = 595. This number is much less than C2

57C
2
57 = 2547216

which is the number of the added equality constraints without the decomposition.
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For the cases from "case9Tree" to "case57Tree" in table 2, as they are radial net-
works, we do not add any virtual line on them. On the computation time, we can
see the proposed method has good performance for the small size cases. For the
medium size cases (nesta_case89_pegase, nesta_case118_ieee, case57Tree), the
computational cost is relatively high, but still acceptable.

5 Conclusion

In this paper, we proposed a nonlinear programming formulation for AC OPF.
This formulation is based on decision variables that align with SOCP/SDP re-
laxation. The proposed formulation exploits power network sparsity feature and
employs a small set of minor constrains related to all 3-node cycles as equality
constraints to enforce rank-1 constraint. Case study results demonstrate the cor-
rectness of this formulation.
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6 All Symbols

Index and set:

N Set of buses.

L Set of transmission lines.

LV Set of virtual lines.

Lch Set of all lines which is equal to LV ∪ L.
G Set of generators.

Ψ Set of cycles.

Adji Set of the buses that have direct connection with Bus i.

Pi Path from reference node to the node i.

Parameters:

Y Admittance matrix of the system.

G\Gij Conductance matrix of the system\element of G.

B\Bij Susceptance matrix of the system\element of B.

C2k, C1k, C0k Coefficients of the quadratic cost function for the generator k.

P d
i , Q

d
i Total active and reactive powers demand Bus i.

Pmin
gi , Pmax

gi Minimum and maximum active power of genertor i.

Qmin
gi , Qmax

gi Minimum and maximum reactive power of genertor i.

Umin
i , Umax

i Minimum and maximum bus voltages.

Smaxij Complex power limit of transmission line (i, j).

Variables:

P g
i , Q

g
i Total active and reactive powers from the generators connected

at Bus i.

U Voltage magnitude vector.

θ Voltage angle vector.

Sij The complex power flow on the transmission line from Bus i to j

Ū The voltage phasor vector.

X\Xij A Hermitian matrix which is equal to Ū ŪH \ Element of X.

Rij, Iij Real and imaginary parts of Xij .

M Non-principle minor of X .
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TABLE 1
Test case results

SDP Relaxation Matpower Nonlinear Rank 1 Method
Case Obj Rank %Gap Obj Obj %Diff Time N_vlines N_lines N_cycle3

nesta_case3_lmbd 5789.914 2 0.04 5812.643 5812.643 0.00 0.08 0 3 1
nesta_case5_pjm 16635.76 2 5.22 17551.891 17551.889 0.00 0.13 1 6 3
nesta_case9_wscc 5296.685 2 0.00 5296.686 5296.686 0.00 0.13 3 9 4
nesta_case57_ieee 1143.280 2 0.00 1143.283 1143.283 0.00 2.43 55 78 77

nesta_case89_pegase 5820.217 2 0.00 5820.387 5820.387 0.00 52.84 55 206 173
nesta_case118_ieee 3689.495 3 0.01 3692.891 3692.891 0.00 50.35 73 179 135

TABLE 2
Special test case results

SDP Relaxation Matpower Nonlinear Rank 1 Method
Case Obj Rank %Gap Obj Obj %Diff Time N_vlines N_lines N_cycle3
WB5 946.530 2 0.01 946.584 946.584 0.00 0.08 1 6 3

case9mod 2753.041 2 10.84 3087.842 3087.842 0.00 0.15 3 9 4
case39mod1 10804.055 2 3.72 11221.003 11221.003 0.00 1.81 21 46 29
case39mod2 940.341 2 0.15 941.738 941.738 0.00 1.85 21 46 29
case9Tree 5335.701 2 52.70 11279.476 11279.476 0.00 0.09 0 8 0

case14Tree 11861.899 2 0.59 11932.252 11932.252 0.00 0.16 0 13 0
case30Tree 4244.549 2 11.47 4794.313 4794.314 0.00 0.31 0 29 0
case39Tree 44868.452 2 0.37 45037.039 45037.042 0.00 0.49 0 38 0
case57Tree 10458.099 2 13.58 12100.849 12100.856 0.00 25.81 0 56 0
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Legends of figures:

FIGURE 1: One chordless cycle become 3-node cycles with virtual lines.

FIGURE 2: Five-bus test case with two cycles. Cycle a: nodes {1, 2, 3, 4}, lines
{(1, 2), (2, 3), (3, 4), (4, 1)}; Cycle b: nodes {1, 4, 5}, lines {(1, 4), (4, 5), (5, 1)}.

FIGURE 3: Spanning tree of the five-bus test system.


