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Abstract—This paper presents data analytic results based on
four-year data from real-world 1.6 kW photovoltaic (PV) panels
and 20 kWh Lithium-ion batteries installed at St. Petersburg
Florida. The 1-minute interval raw data are collected and stored
in spreadsheets. We present the raw data related to power outputs
from PVs and batteries as well as estimated state-of-charge (SOC)
of batteries. Data analysis is conducted using Python sqlite3 and
Pandas to examine histograms of PV daily energy output and
battery degradation.

Index Terms—PV, battery, data analysis

I. INTRODUCTION

Two photovoltaic-battery systems were installed at Univer-
sity of South Florida (USF) St. Petersburg campus (Campus
Battery) and at Albert Whitted Airport at St. Petersburg down-
town (Airport Battery) to realize smart grid functionalities
such as peak shaving or demand response. Currently, each
PV is connected to the grid through an inverter, while the two
batteries are 5kW-4 hours Li-ion batteries and equipped with
a charger and an inverter. Each battery has 16 battery cells.
Each cell has a rated dc voltage 3 V and rated current 400 A.
The rated dc voltage of each battery is 48 V. The ac side of
the battery at the USF St. Petersburg campus is connected to
a 120/208 V panel. The ac side of the battery at the Albert
Whitted Airport is connected to a 120/240 V panel.

The configuration of the PV-battery system is shown in Fig.
1. The two batteries are operated in two modes. The first one
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Fig. 1: Configuration of Photovoltaic-Battery systems in both
campus and airport sites.

is operated for peak shaving and energy shift. The second one
is operated to realize demand response.

This project is supported by Duke Energy Florida through Sustainable
Electrical Energy Delivery Systems.

(1) Peak shaving provided by a PV/battery system with con-
stant output power. The PV/battery system is expected to
provide constant output power at peak periods, Summer
(14:00-20:00) and Winter (06:00-10:00). The net output
of the SEEDS system (PV and battery) will be held
at 1.4 kW. The battery will be charged to a minimum
available energy of 10kWh prior to 6 am daily. The
charging will commence at midnight and be done by
5 am daily. Off-peak energy and/or available solar PV
energy will be used for the charging.

(2) Demand response by a PV/battery system with maxi-
mum output power. The second PV/battery system will
also be charged during the off-peak period. Full 5 kW
discharge capacity of the charged battery system and PV
output will be delivered to the system whenever there is
a command.

Approach and requirements to realize smart grid functions:
Remote real-time control and monitoring system are required
to develop the above mentioned smart grid functions. In order
to realize the remote control and monitoring, the following
requirements must be met:

(1) Measurements such as power, voltage, current flowing
into or out from the ac side of the battery system should
be obtained constantly. Energy can be computed based
on these measurements.

(2) Measurements such as temperature, dc voltage, dc cur-
rents, battery SOC for a battery should be monitored.

(3) The human machine interfaces (HMI) provided by the
battery vendor (Green Smith) should be able to execute
inverter control to charge and discharge the battery sys-
tem. At the SCADA control center, the USF personnel
set the PV/battery operation patterns, including power
dispatch level at every hour. At each PV/battery system
site, the battery’s controller receives this command and
reads PV’s power. It then sets its power demand to be
the total power subtracted by the PV power.

The battery vendor Green Smith provide real-time mea-
surements from both ac side and dc side measurements and
battery SOC estimation. In this paper, we use SOC provides
by the vendor. Our work on the battery system identification
can be found at [1]. The battery SOC was estimated by
AutoRegressive eXogenous (ARX) model, a technique that
has been used for dynamic system parameter estimation for
synchronous generators in our other previous work [2], [3].

The main contributions in this paper can be concluded
as follows. (i) The approaches of storing and analysis of
real-world big data using database and python can handle
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Fig. 2: 2013-2016 Campus and Airport Data Availability.
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Fig. 3: A week’s data. From top to bottom: campus PV, campus battery, campus battery SOC, airport PV, and airport battery,
airport battery SOC. Note for batteries, reference power direction is assumed to be discharging.

large-scale data. This is not possible if Matlab is used. (ii)
Through statistic analysis, PV daily energy versus environment
variation is clearly shown. (iii) Battery capacity and efficiency
degradation analysis is conducted using real-world data. The
findings match degradation analysis in the literature.

II. COLLECTED DATA FORMAT AND DATA ANALYSIS
TOOLS

One-minute interval data are collected. The measurements
come from the four power meters installed at campus PV,
campus battery, airport PV and airport battery. Approximately
525, 600 data points were collected for a whole year except
data outages, which is shown in Fig. 2. Aside from ac power
measurements, battery dc voltage, dc current and state of
charge (SOC) are collected. The data are stored in spreadsheets

TABLE I: Campus data outage records

Times Start End Duration (min)
1 4/16/2016 19:34 4/16/2016 20:31 58
2 8/29/2015 20:20 8/29/2015 20:20 1
3 6/14/2014 1:10 6/14/2014 2:38 89
4 9/22/2014 9:14 9/22/2014 9:26 13
5 11/20/2014 13:07 11/20/2014 13:17 11
6 5/16/2013 12:30 5/16/2013 18:43 374
7 5/17/2013 22:10 5/17/2013 22:44 35
8 5/18/2013 3:43 5/18/2013 4:10 28
9 6/2/2013 0:11 6/2/2013 20:20 1210
10 10/23/2013 14:18 10/23/2013 16:42 145

as comma-separated values (csv)-based files.

Due to the large size of the data file, directly using Excel to
make plots takes a large amount of time. In addition, automatic



TABLE II: Airport data outage records

Times Start End Duration (min)
1 6/19/2016 14:01 6/19/2016 15:16 73
2 4/24/2015 15:06 4/24/2015 15:39 34
3 5/22/2015 10:13 5/22/2015 10:34 22
4 5/23/2015 14:31 5/23/2015 14:58 28
5 7/28/2015 10:04 7/28/2015 10:15 12
6 8/29/2015 20:20 8/29/2015 20:20 1
7 8/30/2014 5:45 8/30/2014 6:06 22
8 11/19/2014 21:06 11/19/2014 21:12 7
9 12/17/2014 16:13 12/17/2014 17:21 69
10 5/16/2013 6:55 5/16/2013 18:45 711
11 6/2/2013 0:13 6/2/2013 20:22 1210
12 8/12/2013 23:56 8/12/2013 23:59 4
13 8/13/2013 0:00 8/13/2013 0:26 27

plotting is difficult to be realized. In our data analysis work, we
have conducted three tasks to make data analysis and plotting
efficient.

• We have developed an SQL database to store four years’
data in the database. Using query, we can then access
the data fitting the query criteria. For example, we can
list one week’s data just by defining the time should be
within a limit.

• Further, we have developed Python codes to access the
database and make plots using Python module sqlite3 [4].

• Alternatively, we used Python module Pandas [5], [6] to
directly access csv files and make plots using Matplotlib
[7], [8].

The above tasks make data analysis efficient and possible.

III. DATA ANALYSIS RESULTS

A. PV/Battery Operation

Fig. 3 presents the ac power data from September 8th
(Saturday) to September 14th (Sunday) in 2013. Note the
operation of campus battery and airport battery is to provide
constant output power at 1:00 pm-7:00 pm. During each
weekday morning, both batteries get charged using the PV
power before 1:00 pm. Additionally, the campus battery gets
charged in the early morning by electric power to ensure have
enough energy for discharging operation in peak hours. Both
those two batteries collaborate with PVs to provide constant
power in the afternoon. There is no discharging scheduled for
those two batteries on weekend.

Fig. 5 gives the campus site PV/Battery system outputs in
summer and winter operation strategies. The total power (in
red color) indicates that the combined system can effectively
shift to provide constant power during peak hours in Sum-
mer (14:00-20:00) and Winter (06:00-10:00). The PV/Battery
device would keep zero output if there was no need.

B. PV Daily Energy

Fig. 6 and Fig. 7 present the four-year PV daily energy for
the campus PV and airport PV, respectively. The campus PV
daily energy capture capability was improved after 2014. This
is due to the removal of a tree at the site. Shades of the tree
prevented the solar PV to absorb radiation.

The airport PV daily energy plot can be used to examine
the weather impact on PV output. It can be clearly seen that in
Tampa area, solar power is abundant in April and May. Storms
happen in August and September days. Hurrican Irma formed
on August 30 2017, and dissipated on September 13 2017.
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Fig. 4: 2013-2016 airport PV daily energy histograms.

The PV daily energy is computed from PV real-world power
record. The record time interval is 1 minute. We approximately
assumed the power was constant during each minute. Thus, we
can sum up the power for a whole day to carry out the daily
total PV energy through Python Pandas. The histograms in Fig.
4 can be easily plotted using Python’s Matplotlib module.

C. Battery Degradation Analysis
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Fig. 8: Airport battery degradation over time.

The battery degradation can be tested from two aspects.
One is to check round-trip efficiency. Another is to check the



Jul 14 2013 Jul 15 2013 Jul 16 2013 Jul 17 2013 Jul 18 2013 Jul 19 2013 Jul 20 2013
4

3

2

1

0

1

2

3

kW

Campus PV

Campus Battery

Campus Total

Dec 22 2013 Dec 23 2013 Dec 24 2013 Dec 25 2013 Dec 26 2013 Dec 27 2013 Dec 28 2013
4

3

2

1

0

1

2

kW

Campus PV

Campus Battery

Campus Total

Fig. 5: Campus PV/Battery system summer (upper one) and winter (lower one) operations.
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Fig. 6: 2013-2016 campus PV daily energy in kWh.
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Fig. 7: 2013-2016 airport PV daily energy in kWh.

battery chargeable capacity over time. While battery capacity
degradation due to aging is well known and experiments can be
dated back in 2005 in [9] by MIT, few efficiency degradation
experiments can be found, except a recent publication on
small lithium-iron cell at 2.3 Ah [10]. In this paper, both the
degradation analysis on efficiency and capacity for a 20 kWh

battery will be presented.

We use annual efficiency and sample efficiency to check bat-
tery round-trip efficiency. First, each year’s annual efficiency is
calculated through the battery output power spanning a whole
year. We can treat one year as a long-term round-trip since
the beginning SOC is closed to ending SOC for each year.



The percentage of data outage is less than 1% so that we can
ignore them. The ratio of the whole year’s discharged energy
to charged energy is the annual efficiency, shown in Fig. 8a.
Overall, we see a decrease in round-trip efficiency.

On the other hand, one fully charging/discharging cycle
sample is extracted from each year to test sample efficiency.
The data is listed in following TABLE III. Here, SOC should
start from very small value and rise to nearly 100%, then drop
back to a similarly small number. The sample period in 2013 is
detailed in Fig. 9. Fig. 8b represents the efficiencies computed
from 4 samples in TABLE III.
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Fig. 9: Airport battery sample period in 2013.

TABLE III: Airport battery round-trip samples

Year Sample Period SOC Range (%) Efficiency
2013 May.7—May.14 9.8—96.0—9.8 83.81%
2014 Feb.15—Feb.28 15.9—99.3—14.8 88.13%
2015 Aug.1—Aug.8 1.5—99.4—1.5 75.99%
2016 Apr.17—Apr.22 1.4—99.3—1.6 76.34%

Furthermore, we extracted data for cycles with small SOC
deviations (e.g., 10% to 20%) for each year to investigate
efficiency degradation versus SOC level. Take Fig. 10 as an
example, we use a cycle 68% → 90% → 68% to compute the
efficiency at SOC level at 79%. The 4-year Airport battery
efficiency at different SOC levels are presented in Fig. 11.
We can observe the efficiency is almost constant when SOC
level is less than 60%. The efficiency degrades with SOC
increasing in the high SOC region. In addition, the efficiency
degrades with battery aging. Efficiencies in 2015 and 2016 are
lower than those in 2013 and 2014. That can also explain the
annual efficiency degradation and full depth cycle efficiency
degradation in Fig. 8.

Ave SOC=79%

Fig. 10: Airport battery SOC cycle sample with small SOC
deviation.
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Fig. 11: Airport battery efficiency at different SOC levels.

The variation of efficiency due to SOC level and battery
aging can be explained by the equivalent circuit model of
Lithium Iron battery proposed by Liaw in [9] and applied
by other researchers, e.g., [11]. It has been recognized that
the equivalent resistance of a battery is related to SOC and
their relationship is nonlinear [11]. The overall cell resistance
increases when a cell is aging and the SOC increases. This
explains efficiency degradation with SOC increasing in high
SOC region and efficiency degradation with battery aging.

IV. CONCLUSION

This paper presents data analytics based on real-world 1.6
kW PV/20 kWh Battery systems. Besides statistic analysis,
e.g., daily PV energy over four years, the airport battery
degradation analysis has been conducted through round-trip
efficiency computing and total chargeable capacity computing.

V. ACKNOWLEDGEMENT

We would like to acknowledge George T. Gurlaskie of Duke
Energy for his support.

REFERENCES

[1] M. Zhang, Z. Miao, and L. Fan, “Battery identification based on real-
world data,” in Power Symposium (NAPS), 2017 North American. IEEE,
2017, pp. 1–6.

[2] Y. Xu, Z. Miao, and L. Fan, “Deriving arx models for synchronous
generators,” in North American Power Symposium (NAPS), 2016. IEEE,
2016, pp. 1–6.

[3] B. Mogharbel, L. Fan, and Z. Miao, “Least squares estimation-based
synchronous generator parameter estimation using pmu data,” in Power
& Energy Society General Meeting, 2015 IEEE. IEEE, 2015, pp. 1–5.

[4] M. Owens and G. Allen, SQLite. Springer, 2010.
[5] W. McKinney, “pandas: a foundational python library for data analysis

and statistics,” Python for High Performance and Scientific Computing,
pp. 1–9, 2011.

[6] W. McKinney et al., “Data structures for statistical computing in
python,” in Proceedings of the 9th Python in Science Conference, vol.
445. Austin, TX, 2010, pp. 51–56.

[7] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in
science & engineering, vol. 9, no. 3, pp. 90–95, 2007.

[8] W. McKinney, Python for data analysis: Data wrangling with Pandas,
NumPy, and IPython. ” O’Reilly Media, Inc.”, 2012.

[9] B. Y. Liaw, R. G. Jungst, G. Nagasubramanian, H. L. Case, and D. H.
Doughty, “Modeling capacity fade in lithium-ion cells,” Journal of
power sources, vol. 140, no. 1, pp. 157–161, 2005.

[10] E. Redondo-Iglesias, P. Venet, and S. Pelissier, “Efficiency degradation
model of lithium-ion batteries for electric vehicles,” IEEE Transactions
on Industry Applications, 2018.

[11] A. Millner, “Modeling lithium ion battery degradation in electric vehi-
cles,” in Innovative Technologies for an Efficient and Reliable Electricity
Supply (CITRES), 2010 IEEE Conference on. IEEE, 2010, pp. 349–356.


	Introduction
	Collected Data Format and Data Analysis Tools
	Data Analysis Results
	PV/Battery Operation
	PV Daily Energy
	Battery Degradation Analysis

	Conclusion
	Acknowledgement
	References

