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Abstract—This paper aims to conduct volt/var optimization
for unbalanced distribution systems considering discrete tap
changers, such as voltage regulators (VRs). There are two
challenges to tackle this mixed-integer nonlinear optimization
problem, namely, the difficulty to judge the quality of the solution
and the lack of an effective solver. In this paper, we tackle both
challenges. A sparse convex relaxation of branch flow model for
multiphase distribution systems is adopted for the underlying
optimal power flow problem. The overall problem becomes
a mixed-integer semidefinite programming (MISDP) problem.
Further, an effective generalized Benders decomposition (GBD)
algorithm is developed in this paper to solve the problem. Bound-
tightening technique is employed in this research to reduce the
search region of the main problem, which renders a significantly
faster convergence. Numerical tests on an IEEE 37-bus system
demonstrate the convergence of the GBD and success in finding
a global optimal setting of VR taps while abiding by the system’s
constraints.

Index Terms—Voltage regulators, multiphase systems, gener-
alized Benders decomposition, semidefinite programming

I. INTRODUCTION

Volt/var optimization for distribution systems is a chal-
lenging problem. There are two modeling challenges: multi-
phase consideration and discrete control device consideration.
Discrete control devices include voltage regulators (VRs),
online load tap changers (OLTC), and switched capacitors.
Simplification, such as single-phase treatment [1] and omission
of discrete devices [2], is usually adopted.

The literature therein has endeavored various models to
consider the two aspects. [3] uses a mixed-integer nonlinear
program (MINLP) to determine the optimal tap setting in
a multiphase OPF problem, while [4] builds an exact MIP-
based VR model applicable to convex relaxation of branch
flow-based power flow for single-phase systems only. It was
then used in [5] to solve a simplified three-phase model where
mutual impedances are ignored and quadratic loss terms are
linearized. Further, [6] and [7] use an approximated VR model
in which the tap ratios are relaxed, which recasts the primary-
to-secondary voltage relationship as inequality constraints.
Although simple, the arbitrariness of secondary-side phase
angles that stems from this approximation generates rank-2
solutions for multiphase systems. In response, [6] proposed to
tighten the solution by placing a tunable resistance between
the sides of the ideal transformer.

Thus far, the emulation of discrete tap switching has not
been tackled for the convex multiphase OPF models. The goal

of this paper is to adequately model volt/var optimization for
multiphase system and with VR considered. We first adopt
the sparse semidefinite programming (SDP) relaxation-based
branch flow model (BFM) proposed by Gan and Low [8],
whose solutions has been shown to be tight for standard IEEE
and other feeder tests. Compared to [9], the SDP-relaxed BFM
has a lower-dimension SDP matrix for each line. We formulate
a mixed-integer SDP problem and develop an efficient solver
based on generalized Bender’s decomposition (GBD). The
following summarizes the contributions of this work:

1) The VR is incorporated into the SDP-relaxed BFM,
whose variable structure is exploited to maintain the angle
difference between the primary and secondary sides. If
the OPF is rank-1, the tap setting is a global optimum.

2) The non-convexity in the variable edges caused by ratio
bilinear terms are overcome by using Benders decompo-
sition, where binaries are fixed in the subproblem (SP)
and solved separately.

3) The iteration of the GBD is accelerated by bound tighten-
ing (BT) tap ratios in the master problem (MP). Bounds
are calculated in optimization-based BT problems solved
prior to the GBD.

The ensuing sections are organized as follows. Section
II reviews the OPF problem and the VR model. Section
III presents the standard GBD algorithm and its iteration.
Further, the GBD algorithm with BT is discussed. Section IV
demonstrates the effectiveness of the algorithms and conducts
numerical tests on an IEEE 37-bus feeder with two VRs.
Section V concludes the paper.

II. PROBLEM FROMULATION

A. OPF Model: SDP-based BFM

1) Notation: A radial distribution system can be modeled as
a tree graph comprised of nodes and directed branch segments,
G(N , E), where N and E correspond to the sets of buses and
lines, respectively. N+ = N −{0} is the set of descent buses
from the substation whose voltage magnitude is fixed, V0 =
Vnom. A phase set of bus i is denoted as Φi, thus Φ ⊆ {a, b, c}.
Diagonal and off-diagonal phase elements are denoted as φφ
and φ, respectively.

2) SDP-based BFM [8]:
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Fig. 1: (a) Per-phase tap-changing transformer model. (b)
Variable representation in SDP-based BFM

Ohm’s Law: For each branch i→ j

Vj =Vi − zijIij (1)

where Vi, Vj , and Iij ∈ C|Φj |, while zij ∈ C|Φj |×|Φj |.
By multiplying both sides by their Hermitian transposes,
and defining vi = ViV

H
i , vj = VjV

H
j , Sij = ViI

H
ij and

`i = IijI
H
ij , then (1) can be re-written as

vj = vi − (Sijz
H
ij + zijS

H
ij ) + zij`ijz

H
ij ∀ (i, j) ∈ E (2)

where vi, vj , `ij , and Sij ∈ C|Φj |×|Φj | with diagonal entries
of vi, vj and `ij as squared magnitudes and off-diagonal ones
as mutual complex elements.

Power Balance: For each i → j → k, to interpret the
power balance at j, (1) is multiplied by IHij

VjI
H
ij = ViI

H
ij − zijIijIHij (3)

Vj
( ∑
k:(j,k)∈E

IHjk + (ILj )H
)

= Sij − zij`ij (4)

where ILj is the load current at bus j. As a result, the power
balance at bus j is the diagonal of (4), which is expressed as∑
k:(j,k)∈E

diag(Sjk) + sLj = diag(Sij − zi`ij) ∀(i, j) ∈ E (5)

PSD and Rank-1 Matrix: To close the gap and set
the relationship between actual electrical components and
surrogate variables, the following positive and rank-1 matrix
is defined

Xij =

[
Vi
Iij

] [
Vi
Iij

]H
=

[
vi Sij
SHij `ij

]
Xij � 0 ∀ (i, j) ∈ E (6)
rank(Xij) = 1 ∀ (i, j) ∈ E (7)

Convexification: The rank-1 constraint (7) is removed
from the set of constraints to arrive at a convex problem. The
solution however should hold tight for each line. A tightness
check will be conducted for the results in Section V.

Voltage Limits: ±5% of the nominal voltage are enforced
as bounds on each element of the diagonal voltage squares.

V 2 ≤ diag(vi) ≤ V
2 ∀ i ∈ N+ (8)

B. VR Model
Three-phase voltages are regulated by connecting three

single-phase VRs. Fig. 1a shows a per-phase VR installed
on (i, j) ∈ E , which is an autotransformer with lumped
leakage and line impedance. The VR incorporation into the
OPF problem is approached by connecting the primary of an
ideal transformer to bus i, and introducing a virtual bus to the
system, i′ ∈ N+, to represent the secondary side. Hence, an
additional variable alluding to the secondary-side voltage is
required.

The VR’s per-phase ratio rφi′ can typically take 33 values
from 90% to 110% with a ∆ri′ = 0.625% ratio change per
tap (±16 and neutral positions). For simplicity, the per-phase
ratio selection is modeled as in (9) with binary variables,
ui′ ∈ U|M |×|Φi′ |, where M = 32 and Rm is the discrete
tap ratio at tap m. The sum of ui′ to 1 yields a single ratio.

rφi′ =

M∑
m=0

(0.9 + ∆ri′ ×m)︸ ︷︷ ︸
Rm

uφi′,m = RTuφi′ (9a)

M∑
m=0

uφi′,m = 1 ∀φ ∈ Φ, i′ ∈ N+ (9b)

It should be noted that the voltage phase angles in the multi-
phase BFM are implicitly formed by the off-diagonal complex
entries, whereas diagonal entries represent their squared volt-
age magnitudes (real values). Therefore, the secondary-side
matrix voltage variable is formulated as

vi′ = (ri′r
T
i′ )� vi = r̂i′ � vi ∀ i′ ∈ N+ (10)

where � is an element-wise multiplication operator. Thus

r̂i′ =

(rai′)
2 rai′r

b
i′ rai′r

c
i′

rbi′r
a
i′ (rbi′)

2 rbi′r
c
i′

rci′r
a
i′ rci′r

b
i′ (rci′)

2


Because

∑
m u

φ
i′,m = 1 and there is only one ui′,m being

1 with the rest being 0, also (uφi′,m)2 = uφi′,m, then the
diagonal element (rφi′)

2 = (RTuφi′)
2 can be expressed as∑

mR
2
mu

φ
i′,m = WTuφi′ (where W is a column vector with

R2
m as elements).

C. Overall Optimization Problem
The rank-relaxed SDP-based OPF problem aims at mini-

mizing the system’s power import from the substation, and
flattening the voltage profile.

min
v,`,S,u

Tr
(
Re(Ssub) + Im(Ssub)

)
+ α

∑
i∈N+

∑
φ∈Φ

|vφφi − V
2
nom|

(11a)

s. t. v0 = VnomV
H
nom (11b)

(2), (5), (6), (8), (9b), (10) (11c)



III. GENERALIZED BENDERS DECOMPOSITION

In this section, we apply the GBD [10], an extended
version of [11], to decouple and solve the problem iteratively,
thereby avoiding the non-convexity caused by binary-variable
multiplication in (10). In each iteration, the binary variable
solution to the master problem is passed to the subproblem.
The subproblem will be solved and an optimality cut will
be created for the master problem. If the master renders the
subproblem infeasible, the subproblem will be reformulated
and a feasibility cut be created.

A. Standard GBD

We denote continuous and binary variables as x =
{v, S, `} ∈ X and u ∈ U, respectively.

1) Subproblem (SP): The subproblem corresponding to the
convex problem in the x-space only is succinctly written as
following. It is the OPF problem with û obtained from the
MP.

SP : θub = min
x

F (x)

s. t. vi′ = r̂i′ � vi, x ∈ X
(12)

If the SP has a solution for û, the optimal objective to SP is
an upper bound to the original problem, notated as θub. It also
provides optimal Lagrangian multipliers λ ∈ R|Φi′ | associated
with the real diagonal of the secondary-side voltage, diag(vi′).

Note for each VR, based on (10), there are 9 equality
constraints. When creating cuts, only three constraints related
to the diagonal components are considered:

vφφi′ = WTuφi′v
φφ
i : dual variable λφ,ki′ .

This consideration simplifies the cuts creating procedure. In
addition, when vi′ and vi are rank-1, enforcing the diagonal
elements of the left and right matrices equal guarantees the
rest 6 equality constraints being satisfied.

2) Feasibility-Check Problem (FCP): If û renders SP in-
feasible, SP is reformulated as FCP in (13) to guarantee that a
feasible solution exists for any u-value. The solution of this is
used to generate a feasibility cut and to ensure the MP avoids
this particular combination of û. Hence, a slack matrix variable
w, serving to relax taps causing infeasibility, is minimized,
and introduced to each equality constraint pertaining to the
tap ratio violation.

FCP : θfc = min
x,w

Trace(w)

s. t. vi′ = r̂i′ � vi + w, w � 0, x ∈ X
(13)

where Trace(w) is minimized, and diag(w) is constrained
to be non-negative. The optimal objective of (13), θfc, and
Lagrangian multipliers µ ∈ R|Φi′ | associated with the diagonal
of equality constraint in (13) are then utilized to create a
feasibility cut.

Algorithm 1: Optimal Tap Setting Using GBD

Pick any û ∈ U. Initialize θ0
lb = −∞ and θ0

ub =∞
while ε ≤ |θnk

ub − θ
nk

lb | do
solve the SP and find the dual related to u
if solution is bounded (finite and feasible) then

increase nk by 1, and update θnk

ub and λnk

else
solve FCP
increase nl by 1, and update θnl

fc and µnl

end if
solve MP, update θnk

lb and û
end while

3) Master Problem (MP): In association with solutions to
(12) and (13), the MP is formulated with constraints on binary
variables, and optimality and feasibility cuts generated from
the subproblems at each iteration.

MP : θlb = min
u,η

η

η ≥ θkub +
∑
i′∈N+

∑
φ∈Φ

λφ,ki′ WT
(
uφi′ − û

φ,k
i′
)
k = 1, · · · , nk

0 ≥ θlfc +
∑
i′∈N+

∑
φ∈Φ

µφ,li′ W
T
(
uφi′ − û

φ,l
i′
)
l = 1, · · · , nl

M∑
m=0

uφi′,m = 1 ∀φ ∈ Φ, i′ ∈ N+

(14)
The optimal objective, θlb, provides the lower bound. The
problems iterate until their objectives meet a pre-defined
tolerance, ε.

B. GBD with Bound Tightening
As the secondary voltage in the SP is constrained within

bounds, the SP’s infeasibility occurs when the MP renders a
tap position that results in the secondary voltage exceeding the
upper bound or falling below the lower one. In the standard
GBD, FCP should be formulated to create a cut whenever the
SP is infeasible. This however increases the iterations, as a
feasibility cut is created each time the MP visits an infeasible
tap ratio at a certain phase. Motivated by the work in [12],
a method is proposed in which feasible ratios are reckoned a
priori, and used to constrain tap ratios in the MP.

1) Bound Tightening Problems (BT): The original problem
is re-formulated such that the secondary voltage is bounded by
the primary voltage multiplied by ratio limits. The objective
function is to minimize (maximize) the secondary voltage to
determine the ratios’ lower (upper) bounds, Ri (Ri) ∈ R|Φi′ |.

BT := min
x

(or max)
x

∑
i′∈N+

∑
φ∈Φ

vφφi′ (15a)

0.92vφφi ≤ v
φφ
i′ ≤ 1.12vφφi ∀φ ∈ Φ, i′ ∈ N+ (15b)

vφi′ = vφi ∀φ ∈ Φ, i′ ∈ N+ (15c)
(2), (5), (6), (8), (11b) (15d)



Algorithm 2: Optimal Tap Setting Using GBD with BT

solve BT problems and compute R and R
Pick any û ∈ U. Initialize θ0

lb = −∞ and θ0
ub =∞

while ε ≤ |θnk

ub − θ
nk

lb | do
solve the SP and find the dual related to u
increase nk by 1, and update θnk

ub and λnk

solve MP’(R,R)
update θnk

lb and û
end while

Ratio bounds are computed as Ri′(Ri′) = diag(vi′)�diag(vi).
� is an element-wise division operator.

2) Master Problem (MP’): By constraining tap ratios with
Ri′ and Ri′ , the feasibility-cut constraints are omitted in MP’,
as the solution to (16) will always make the subproblem
feasible.
MP’ := min

u,η
η

η ≥ θkub +
∑
i′∈N+

∑
φ∈Φ

λφ,ki′ WT
(
uφi′ − û

φ,k
i′
)
k = 1, 2, . . . , nk

M∑
m=0

uφi′,m = 1, Ri′ ≤WTuφi′ ≤ Ri′ ∀φ ∈ Φ, i′ ∈ N+

(16)

IV. NUMERICAL CASE STUDIES

Fig. 2 depicts the modified IEEE 37-bus feeder, an actual
feeder with unbalanced loads and lines. All lines are three-
phase configured. Loads at buses 9, 10, 12, 32, and 33 are
increased by 30% to examine the VRs’ ability to compensate
for voltages of heavy-loaded and remote buses that tend to fall
below 0.95 pu during peak. The peak demand becomes 2.906
MVA with 0.9 PF lagging. Two VRs, each with 33 levels and
a turns ratio varying from 0.9 to 1.1, are installed on two lines.

For both algorithms, the simulations are implemented in
MATLAB using CVX toolbox [13]. The SDP-based SP, FCP,
and BT are solved by Mosek solver [14], while the IP-based
MP and MP’ are solved by Gurobi solver [15]. The tolerance,
ε, is chosen to be 1e−6.
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Fig. 2: Modified IEEE 37-bus feeder.

A. Optimal Tap Setting

Algorithm 2 is carried out with different penalties and five
loading assumptions.

1) Without Flatness Penalty: Setting α to 0, the algorithm
is tested with the first objective term. The results in Table
I indicate that VRs tap high, even though lower tap ratios
are presumably sufficient. The reason is that high voltages
minimize system losses; therefore, the minimum total power
drawn from the substation is needed. However, higher voltages
result in higher energy consumption of voltage-dependent
loads. Fig. 3a shows the voltage profile at 100% loading.

2) With Flatness Penalty: When the voltage flatness is
considered (α = 1), optimal VR tap ratios are closer to unity
(neutral position) in an effort to achieve the trade-off between
the two objectives. Consequently, a flatter profile is obtained
as seen in Fig. 3b.

B. Relaxation Tightness

The ratio between the second-dominant eigenvalue and the
dominant eigenvalue, |eig2/eig1| where |eig1| ≥ |eig2| ≥ 0, of
the SDP matrices measures the proximity to rank-1, and thus
the solution tightness. Because the per-loading maximum ratio
over all lines satisfies a sufficiently small value, as tabulated
in the last column of Table I, the relaxation is deemed exact.

C. Standard GBD vs GBD with BT

Fig. 4a-4c illustrate a comparison of the two algorithms
in the number of iterations and computation time over 10

TABLE I: Numerical Results for The Proposed Method

System
Loading

Flatness
Penalty
α

Sub. Power (pu) Opt. Ratio of VR1 Opt. Ratio of VR2 Sys. Voltage (pu) Tightness
P Q A B C A B C maximum minimum max(| eig2

eig1
|)

100%
0 2.6949 1.3073 1.0687 1.0687 1.0687 1.0812 1.075 1.0812 1.0485 0.9658 5.9846e-07
1 2.6963 1.3079 1.025 1.0312 1.0312 1.05 1.0375 1.05 1.0159 0.9658 9.5939e-09

80%
0 2.1417 1.0408 1.0625 1.0625 1.0687 1.075 1.0687 1.075 1.0495 0.9729 3.3001e-07
1 2.1427 1.0412 1.0187 1.0187 1.025 1.0375 1.025 1.0375 1.0132 0.9729 1.1361e-08

60%
0 1.5959 0.7769 1.0562 1.0562 1.0625 1.0687 1.0625 1.0687 1.0483 0.9798 1.2951e-07
1 1.5965 0.7772 1.0125 1.0187 1.0187 1.025 1.0187 1.025 1.0072 0.9798 2.7155e-09

40%
0 1.0571 0.5155 1.0562 1.0562 1.0562 1.0625 1.0562 1.0625 1.0491 0.9866 3.0656e-09
1 1.0574 0.5156 1.0062 1.0125 1.0125 1.0187 1.0125 1.0187 1.0059 0.9866 3.7393e-08

20%
0 0.5253 0.2566 1.05 1.05 1.05 1.05 1.05 1.05 1.0496 0.9934 2.1161e-08
1 0.5254 0.2566 1 1 1.0062 1.0062 1.0062 1.0062 1.0018 0.9925 2.9842e-09



loading conditions. While the two algorithms result in equiva-
lent objective values, and thus tap ratios of VR1 and VR2,
it is obvious that the GBD along with BT strategy has a
computational advantage over that of the standard one with
18 iterations and 51.2 s on average.

Fig. 4d shows the iterations of algorithm 1 and 2 for 100%
loading, where 15 and -15 correspond to infinite values. Bound
tightening technique can greatly speed up convergence.
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Fig. 3: Voltages during 100% loading (a) α = 0, (b) α = 1.

V. CONCLUSION

In this paper, an optimal tap setting for VRs, in a convex
multiphase AC OPF framework, was proposed. The discrete
nature of the taps present in the primary-to-secondary voltage
constraints renders the overall problem non-convex. Therefore,
GBD was applied to solve the mixed-integer SDP problem.
In addition, bound-tightening problems were proposed, whose
solution is used to enhance the computation of the GBD.
The results demonstrated the applicability of this method in
regulating nodal voltages with multiple loading conditions.
Given that the algorithm proposed yields tight SDP solutions,
future work will utilize these promising results to develop
a more comprehensive volt/var optimization for distribution
systems.
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