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Abstract

In this paper, we exploit sparsity technique and strengthen second-order cone programming (SOCP) relax-

ation of alternating current optimal power flow (AC OPF) through enforcing submatrices corresponding to

maximal cliques and minimal chordless cycles in the cycle basis positive semi-definite (PSD). The proposed

method adds virtual lines in minimal chordless cycles to decompose each of them into 3-node cycles. By

enforcing the submatrices related to 3-node cycles PSD, the resulting convex relaxation has a tight gap. For

majority of the test instances, the resulting gap is as tight as that of a semi-definite programming (SDP)

relaxation, yet the computing efficiency is much higher. Further, convex iteration is implemented on the

proposed solver to achieve exactness by enforcing all submatrices corresponding to lines and virtual lines

rank-1. Test results from small size to large size with thousands of buses demonstrate the capability of the

proposed solver and the feasibility of the convex iteration implementation.

Keywords: SOCP; SDP; AC OPF; Chordal Relaxation; Sparsity Technique; Convex Iteration

1. Introduction1 1

SDP relaxation of AC OPF has shown to be a very strong convex relaxation to the original non-convex2 2

formulation [1, 2]. Nevertheless, the disadvantage of SDP relaxation is its expensive computational cost.3 3

For that reason, sparse technique has been exploited for SDP relaxation [3, 4, 5]. The main theorem is4 4

the positive semidefinite (PSD) matrix completion theorem [6], which states that if every submatrix related5 5

to every maximal clique in a chordal graph is PSD, then the partial symmetric matrix Xch corresponding6 6

to the chordal graph can be completed as a full PSD matrix X � 0. The graph related to the topology of7 7

a power grid is usually not a chordal graph. To obtain a chordal graph, Cholesky factorization has been8 8

used to find chordal extension [3]. Detailed implementation procedure of Cholesky factorization and sparse9 9

SDP relaxation can be found in [4]. Instead of finding maximal cliques and further a clique tree through10 10
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Cholesky factorization, tree width decomposition can also be used to find a clique tree [5]. This method has11 11

been implemented in a software package for SDP relaxation of OPF [7].12 12

The aforementioned researches focus on sparse SDP relaxation. On the other hand, there is a category13 13

of research focusing on strengthening SOCP relaxation [8, 9]. Compared to SDP relaxation, SOCP relax-14 14

ation is computationally more efficient. Nevertheless, the feasible region of SOCP relaxation is less tight.15 15

Strengthening SOCP relaxation has been studied in [8, 9] by implementing cutting plane algorithms, i.e.,16 16

iteratively adding valid inequalities (aka. cuts), including SDP based ones. The principle of the methods in17 17

[8, 9] is based on the fact that for a PSD matrix, its submatrices corresponding to cycles in a cycle basis are18 18

PSD. If a submatrix of the solution of the SOCP is not PSD, a valid inequality can be constructed to reduce19 19

the search region. The constraint can be constructed using duality concept in [8] and shortest Euclidean20 20

distance technique in [9].21 21

In this paper, we explore an alternative computationally friendly method that can strengthen SOCP22 22

relaxation. Instead of iteratively solving and strengthening the SOCP relaxation by cutting plane algorithms,23 23

we propose to directly add maximal clique-based and cycle-based SDP feasibility constraints in the SOCP24 24

relaxation. Those added constraints enforce the submatrices related to maximal cliques and cycles to be25 25

PSD.26 26

Further, we conduct chordal relaxation for chordless cycles. A chordless cycle of size n can be decomposed27 27

into 3-node cycles or cliques by adding (n − 3) virtual edges. Adding virtual lines has also been adopted28 28

by other researchers. For example, [10] proposed to add virtual lines between the reference bus and all29 29

its non-adjacent buses. By enforcing all submatrices related to the virtual lines PSD, the resulting convex30 30

relaxation in [10] is stronger than the original SOCP.31 31

Compared to [10], our method of virtual line addition based on chrodless cycle 3-node decomposition32 32

results in less virtual lines and thus is more efficient. Overall, this method results in a stronger convex33 33

relaxation compare to SOCP relaxation. All 2 × 2 principal submatrices of the full matrix are guaranteed34 34

to be PSD. Further, all maximal cliques with size greater than 2 in the original power grid graph, and the35 35

3-node cycles constructed from chordless cycles are PSD. The computing efficiency has been compared with36 36

sparse SDP methods [4] [5] and is found to be higher. Though the graph after chordal extension is not37 37

guaranteed to be a chordal graph, the resulting formulations in many cases are as strong as SDP relaxation.38 38

Finally, based on the proposed convex relaxation, convex iteration is carried out based on 3-node cycles.39 39

Convex iteration based on SDP OPF has been implemented in [11][12]. SOCP exactness condition [13]40 40

states that the exactness condition is for the submatrices related to two nodes of a line PSD and rank-1,41 41
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and cycle constraints (sum of the angles across a cycle is zero) satisfied. With every cycle in a cycle basis42 42

has been decomposed into 3-node cycles, the cycle constraints can be replaced by the cycle constraints of43 43

3-node cycles. The exactness condition thus requires that every submatrix corresponding to every 3-node44 44

cycle is PSD and rank-1. This requirement is further translated to an equivalent requirement: all 3 × 345 45

submarices corresponding to 3-node cycles should be PSD and every 2× 2 submatrix corresponding to lines46 46

and virtual lines should be rank-1. Convex iteration is then implemented to enforce those 2× 2 submatrices47 47

rank-1. The resulting solution should be a feasible solution.48 48

Our contribution is threefold. First, we answer a question naturally arise from the research results from49 49

[8] and [9]: Will a PSD solution be found if its SOCP solution’s submatrices related to cycles in a cycle basis50 50

are PSD? We demonstrate that chordal relaxation for every cycle in a cycle basis cannot result in a chordal51 51

graph. Hence, there is no guarantee that the strengthened SOCP in [8] and [9] can lead to SDP solution52 52

eventually. Second, we propose a stronger convex relaxation compared to SOCP by enforcing minimal cycles53 53

of a cycle basis PSD. This enforcement can be further replaced by 3-node cycle PSD enforcement. The54 54

proposed solver is implemented in CVX platform and shows higher computing efficiency compared with55 55

sparse SDP methods [4] [5]. Third, based on the 3-node cycles, we implement convex iteration to enforce56 56

the submatrices related to the 3-node cycles PSD and rank-1. An even more efficient rank-1 enforcement is57 57

then derived. With the proposed sparse solver, enforcing all 2 × 2 submatrices related to lines and virtual58 58

lines rank-1 will lead to a feasible solution.59 59

The rest of the paper is organized as follows. Section II presents SOCP and SDP relaxations of AC60 60

OPF. Section III presents the maximal clique- and cycle-based SOCP formulations. Section IV presents the61 61

convex iteration method. Numerical results are presented in Section V. Section VI concludes the paper.62 62

2. SOCP and SDP Relaxations of AC OPF63 63

2.1. SOCP and SDP relaxations64 64

The decision variables of AC OPF are voltage magnitudes V , phase angles θ of buses with the bus set65 65

notated as B, and generators’ real and reactive power outputs, notated as P gi , Qgi , where i ∈ G, and G ⊆ B66 66

is the subset of the buses. The set of the branches is notated as L.67 67

The AC OPF formulation is a nonconvex optimization problem. This can be shown by the power injection68 68

equality constraints. Given the system admittance matrix Y = G + jB, the power injection at every node69 69
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can be expressed by V and θ.70 70

P gi − P
d
i =

∑
j∈δi

ViVj(Gij cos(θi − θj) +Bij sin(θi − θj))

Qgi −Q
d
i =

∑
j∈δi

ViVj(Gij sin(θi − θj)−Bij cos(θi − θj))
(1)

where superscript g notates generator’s output and d notates load consumption, δi is the set of the buses71 71

that are directly connected to Bus i.72 72

Note that the equality constraints of power injections are nonlinear in terms of V and θ. This yields the73 73

AC OPF problem nonconvex. Relaxations have been developed in the literature to have a convex feasible74 74

region. These methods deal with new sets of decision variables to replace V and θ.75 75

In SOCP relaxation [14], a new set of variables cij and sij is used to replace the voltage phasors Vi∠θi, i ∈

B.

cii = V 2
i , i ∈ B

cij = ViVj cos(θi − θj), (i, j) ∈ L

sij = −ViVj sin(θi − θj), (i, j) ∈ L

where cij = cji and sij = −sji.76 76

It is easy to find the following relationship:

c2ij + s2ij = V 2
i V

2
j = ciicjj . (2)

There will be |L| number cij and sij . If there is no direct connection between Bus i and Bus j, the power77 77

injection equations will not contain cij nor sij . The decision variables V and θ are replaced by cii, i ∈ B,78 78

and cij , sij , (i, j) ∈ L. The dimension of the new set of the variables is 2|G|+ |B|+ 2|L|.79 79

With the new set of variables, power injection equations (1) are now linear. The line flow limit constraints

become second-order cone constraints. The only constraint that makes the program nonconvex is (2). This

constraint can be relaxed as a second-order cone:

c2ij + s2ij ≤ ciicjj , (i, j) ∈ L (3)

This relaxation was first proposed in [14] for AC OPF and named as SOCP relaxation.80 80

4



In SDP relaxation proposed by [15], the decision variables related to voltage phasors are replaced by a81 81

matrix X = V V
H

, where Xij = V iV
∗
j = cij − jsij , superscript H denotes Hermitian transpose for a vector82 82

and superscript ∗ means complex conjugate for a scalar.83 83

(3) can be rewritten as

∣∣∣∣∣∣∣
Xii Xij

Xji Xjj

∣∣∣∣∣∣∣ = XiiXjj −XijXji ≥ 0. (4)

Based on the definition X = V V
H

, it is obvious that X is PSD and rank-1.

X = XH , X � 0, and rank(X) = 1 (5)

X � 0 means that this matrix is PSD.84 84

The power injection constraints are linear with the elements of X. With the rank-1 constraint relaxed,85 85

the problem is a convex problem: SDP relaxation of AC OPF. For tree networks, SOCP relaxation and86 86

SDP relaxation are equivalent [2]. For meshed network, the SOCP constraint (3) or (4) enforces only 2× 287 87

principal submatrices related to lines PSD. For cliques with sizes greater than 2 and cycles, SOCP relaxation88 88

does not guarantee the related submatrices PSD.89 89

3. Prposed Sparse Convex Relaxation Formulation90 90

Instead of dealing with a full matrix X for the entire grid, for each maximal clique and each cycle in91 91

the cycle basis of the network, we impose the PSD constraint for the corresponding submatrix X̃(i). This92 92

is equivalent to first conduct chordal extension to make a chordless cycle of size n a clique and then enforce93 93

the related n×n submatrix PSD. On the other hand, there is a more efficient way of chordal extension for a94 94

chordless cycle: A cycle can be decomposed into 3-node cycles. This approach can save computing cost due95 95

to the reduction of the size of the PSD matrices (all 3× 3). We further examine if such chordal relaxation96 96

can lead to a chordal graph for the entire power grid. If so, we have a sparse SDP relaxation. If not, we97 97

have a stronger convex relaxation compared to SOCP.98 98

In this section, we first review a few graph theory techniques that will be used to identify maximal cliques99 99

and chordless cycles. We then examine the proposed chordal extension for various examples and check if100 100

they can lead to a chordal graph. Finally, we give the proposed sparse convex relaxation formulation.101 101
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3.1. Maximal Cliques Identification102 102

Given a graph’s boolean adjacency matrix, all maximal cliques can be identified using Bron-Kerbosch103 103

algorithm [16]. In this project, a MATLAB toolbox [17] based on Bron-Kerbosch algorithm has been used104 104

to identify maximal cliques. Table 1 presents the size of the largest maximal cliques in test instances. We105 105

may observe that all grids have largest maximal cliques with size 3 or less, except IEEE 118-bus system.106 106

This system has a maximal clique of size 4.107 107

After identifying the maximal cliques in a power grid, the next step is to identify chordless cycles.108 108

3.2. Minimal Cycles in a Cycle Basis109 109

Cycle basis identification algorithm in [18] is used to identify the cycle basis. A related MATLAB toolbox110 110

is also available [19]. The procedure of cycle basis identification is to first build a spanning tree. The edges111 111

that are not in the spanning tree are identified as the back edges. The number of back edges is the number112 112

of the cycles in a cycle basis. The back edges are added back to the spanning tree one by one. If a back edge113 113

is added, one cycle is identified. The resulting cycles are not necessarily minimal cycles. In this project, we114 114

aim to find minimal cycles. The justification of minimal cycles is given by the following example.115 115

Fig. 1 presents an example graph to illustrate the chordal graph construction and why minimal chordless116 116

cycles are desired. Fig. 1(a) presents the original topology of a graph. The definition of a chordal graph is117 117

that all cycles of four or more vertices have a chord. This original graph is not a chordal graph since there118 118

is no chord for cycle {2, 3, 4, 5}.119 119

As cycle basis identification algorithm does not guarantee minimal chordless cycles, we may end up with120 120

two cycles identified for Fig. 1(a): {1, 2, 5} and {1, 2, 3, 4, 5}. Suppose that for the second cycle identified,121 121

two lines: 1 − 4 and 1 − 5 are added. The resulting graph shown in Fig. 1(b) is not a chordal graph since122 122

there is no chord in cycle {2, 3, 4, 5}.123 123

On the other hand, if we are able to identify the two minimal chordless cycles as {1, 2, 5} and {2, 3, 4, 5},124 124

we may add a chord in the 4-node cycle (line 2−4 or line 3−5). The resulting graphs shown in Fig. 1(c)(d)125 125

are two chordal graphs.126 126

To find minimal chordless cycle in a cycle basis, we use shortest path algorithm. For every back edge,127 127

first, the entire graph will have this back edge removed. The two nodes of the back edge are defined as128 128

the start node and the destination node. Shortest path in the modified graph from the start node to the129 129

destination node can be found using MATLAB 2017’s graph toolbox.130 130
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3.3. Chordal Extension131 131

A further graph decomposition strategy is employed to have virtual lines added and have any minimal132 132

chordless cycles with size greater than 3 to be decomposed into cycles with 3 nodes. The number of virtual133 133

lines added is (n− 3) where n is the size.134 134

The graph after chordal extension is not necessarily a chordal graph. Though these cycles can be extended135 135

into chordal graphs, the entire grid may still have other cycles with size greater than 3. If a graph is chordal,136 136

then there exists a permutation to make the Cholesky factorization with zero filling. On the other hand,137 137

if there exists Cholesky factorization with non-zero filling, then the graph is not a chordal graph. In this138 138

project, we adopt MATPOWER’s SDP toolbox [20] function maxcardsearch written by Dan Molzahn to139 139

conduct the check.140 140

IEEE 14-bus system and IEEE 30-bus system are used as two examples in Fig. 2 to demonstrate minimal141 141

cycles and 3-node decomposition by adding virtual lines (dotted lines). If the resulting graph after 3-node142 142

decomposition is not a chordal graph, Cholesky factorization is then conducted. The additional virtual lines143 143

will be added as solid magenta lines. We can see that the 14-bus system after 3-node decomposition is a144 144

chordal graph while the 30-bus system after 3-node decomposition is not a chordal graph. Additional lines145 145

should be added to achieve a chordal graph.146 146

Two cycles with size greater than 4 are identified for the 14-bus system. They are {4, 5, 6, 13, 14, 9} and147 147

{4, 5, 6, 11, 10, 9}. Node 6 is used as the starting node to add virtual lines for both cycles. Total there are 4148 148

virtual lines added to decompose the two cycles into 3-node cycles. The resulting graph is a chordal graph.149 149

Four cycles with size greater than 4 are identified for the 30-bus system. They are {16, 12, 4, 6, 10, 17},150 150

{25, 27, 28, 6, 10, 22, 24}, {18, 15, 12, 4, 6, 10, 20, 19}, and {23, 15, 12, 4, 6, 10, 22, 24}. For the first cycle, 3151 151

virtual lines are added starting from node 16: 16 − 4, 16 − 6, and 16 − 10. Similarly, virtual lines are also152 152

added. The resulting graph, however, is not a choral graph. Cholesky factorization is then conducted and153 153

5 virtual lines are found: 25− 23, 6− 12, 16− 23, 16− 18, 23− 18.154 154

We have also conducted chordal extension to make every minimal cycle a clique. The resulting graphs155 155

for systems with size more than 57 are found as not chordal graphs.156 156

Remarks: This study answers a question naturally arise from the research on cycle-based SDP feasibility157 157

enforcement presented in [8] and [9]: Will a PSD solution be found if its SOCP solution’s submatrices related158 158

to cycles in a cycle basis are PSD? We demonstrate that chordal relaxation for each cycle of a cycle basis159 159

cannot result in a chordal graph. Hence, there is no guarantee that the strengthened SOCP in [8] and [9]160 160

can lead to SDP solution eventually.161 161

7



3.4. Proposed sparse convex relaxation Formulation162 162

With no guarantee of a chordal graph, the 3-node decomposition leads to a sparse convex relaxation. The163 163

decision variables of the proposed convex relaxation include cii (i ∈ B) and cij , sij ((i, j) ∈ L∪V). V notates164 164

that the set of virtual lines for 3-node cycles decomposition. Note that compared to SOCP formulation165 165

whose decision variables include cij and sij for every line, the proposed convex relaxation has additional166 166

decision variables related to virtual lines.167 167

Sparse matrix technique is employed in the proposed convex relaxation formulation. A sparse matrix X

is defined to have its diagonal elements and elements related to lines and virtual lines non zero. The rest

elements are all zeros.

Xii = cii, i ∈ B (6a)

Xij = cij − jsij , (i, j) ∈ L ∪ V (6b)

Xji = cij + jsij , (i, j) ∈ L ∪ V (6c)

The sparse convex relaxation enforces all submatrices related to maximal cliques PSD. The maximal cliques

include the maximal cliques with size greater than 2 from the original graph, 3-node cycles resulting from

decomposition, and rest lines. The formulation is presented in (7).

min f(Pg) (7a)

s.t. P gi − P
d
i =

∑
j∈δi

(Gijcij −Bijsij), i ∈ B (7b)

Qgi −Q
d
i =

∑
j∈δi

(−Gijsij −Bijcij), i ∈ B (7c)

Pij = gij(cii − cij)− bijsij , (i, j) ∈ L (7d)

Qij = −bij(cii − cij)− gijsij , (i, j) ∈ L (7e)√
P 2
ij +Q2

ij − S
max ≤ 0, (i, j) ∈ L (7f)

(V min
i )2 ≤ cii ≤ (V max

i )2, i ∈ B (7g)

Pmin
g ≤ Pg ≤ Pmax

g , Qmin
g ≤ Qg ≤ Qmax

g (7h)

Constraints (6)

For all cliques MC,

X̃(i) � 0, i ∈ SMC (7i)
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where SMC notates the set of maximal cliques and X̃i notates the submatrix of X related to ith maximal168 168

clique. gij = real(yij) and bij = imag(yij) and yij is a branch (between Bus i and Bus j)’s admittance.169 169

(7b) and (7c) represent the net power injection constraints at each bus. (7f) is the line flow limit constraint.170 170

(7g) is the voltage limit constraint. (7h) are the generator power limit constraints. (7i) enforces PSD for171 171

submatrices related to maximal cliques.172 172

Remarks: (7) is a general SOCP/SDP AC OPF solver employing sparse matrix technique. If chordal173 173

extension of a power grid can result in a chordal graph, the above solver is a SDP solver. On the other hand,174 174

if the graph is not a chordal graph, the above solver is a stronger convex relaxation solver than SOCP. For175 175

comparison, we have employed Cholesky factorization method to find a chordal graph (Solver B in Section176 176

V).177 177

4. Convex Iteration178 178

4.1. Exactness based on 3-node cycles179 179

The 3-node cycle decomposition makes computing more efficient. In this paper, we claim that if the180 180

submatrices related to the 3-node cycles inside each cycle in a cycle basis are PSD and rank-1, then the full181 181

matrix is an exact solution.182 182

As the lower limit of bus voltage is larger than zero in general, the constraint (7g) can ensure Xii is

positive for any i ∈ B. Thus, the sufficient and necessary condition for a solution from SOCP relaxation

being feasible or exact is as follows [2].

∣∣∣∣∣∣∣
Xii Xij

Xji Xjj

∣∣∣∣∣∣∣ = 0 (8a)

∑
(i,j)∈c

∠Xij = 0, c ∈ C (8b)

where C is the set of cycles in the power network.183 183

(8a) guarantees that the submatrix related to two nodes i and j related to a line is rank-1. Besides (8a),184 184

(8b) guarantees the submatrix related to a cycle is PSD and rank-1.185 185

For any chordless cycle of size n, we may add (n − 3) virtual lines to decompose the cycle into (n − 2)186 186

3-node cycles. The cycle constraint (8b) can then be replaced by the cycle constraints related to every187 187

3-node cycle.188 188
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Lemma 1: With every cycle in a cycle basis of a graph decomposed into 3-node cycles, if all submatrices189 189

corresponding to 3-node cycles are PSD and rank-1, the full matrix related to the entire graph is PSD and190 190

rank-1. �.191 191

Theorem 1 For a 3 × 3 PSD matrix related to a 3-node cycle, given that all 2 × 2 submatrices related to

lines are PSD and rank-1, then the 3× 3 matrix is also rank-1.

Proof: Consider a Hermitian and PSD matrix X related to a 3-node cycle:

X =


X11 X12 X13

X21 X22 X23

X31 X32 X33

 .

Since the three 2×2 principal submatrices of X related to three lines are PSD and rank-1, their determinants

are 0. ∣∣∣∣∣∣∣
X11 X12

X21 X22

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
X22 X23

X32 X33

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
X11 X13

X31 X11

∣∣∣∣∣∣∣ = 0, or : (9)

X11X22 = |X12|2, X22X33 = |X23|2, X11X33 = |X13|2

We will examine the determinant of X.

|X| = X11X22X33 +X12X23X31 +X13X21X32

− |X13|2X22 − |X23|2X11 − |X12|2X13

Replacing |Xij |2 by XiiXjj leads to:

|X| = −2X11X22X33 +X12X23X31 +X13X21X32

= −2X11X22X33 + 2|X12||X23||X31| cos(θ12 + θ23 + θ31)

where θ12, θ23, θ31 represent the angles of X12, X23, and X31. Note that X11X22X33 = |X12||X23||X31|

according to (9). Thus,

|X| = −2X11X22X33(1− cos(θ12 + θ23 + θ31)). (10)
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Since cos(θ12+θ23+θ31) ≤ 1, |X| ≤ 0. On the other hand, X is PSD, hence |X| ≥ 0. Therefore, |X| = 0.192 192

This means that the rank of X is less than 3.193 193

The sum of angles is found to be 0 since |X| = 0 enforces the following constraint.

cos(θ12 + θ23 + θ31) = 1⇒ θ12 + θ23 + θ31 = 0

This means that cycle {(1, 2), (2, 3), (3, 1)} satisfies the SOCP exactness condition (8b). Therefore, based194 194

on the sparse convex relaxation formulation in (7), to have an exact solution, we only need to enforce 2× 2195 195

submatrices corresponding to all lines rank-1. �196 196

We will implement this requirement in convex iteration.197 197

4.2. Principle of convex iteration198 198

Convex iteration has been applied to SDP OPF to achieve exact solutions in [11, 12]. We will briefly199 199

review convex iteration principle in this section.200 200

For a n× n Hermitian PSD matrix, its trace equals the sum of all its eigenvalues.201 201

Tr(X) =

n∑
i=1

λi, λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 (11)

where λi are the eigenvalues of X; Tr(·) is the “Trace” calculation. If X is rank-1, then all eigenvalues202 202

except λ1 is zero. Thus:203 203

Tr(X)− λ1 = 0. (12)

The maximum eigenvalue λ1 can be obtained through the following equation [21]:204 204

λ1 = Tr(Xu1u
H
1 ) (13)

where u1 is the normalized eigenvector correspond to λ1. Thus, combining (12) and (13) leads to:

Tr(X(I − u1uH1 )) = 0 (14)

Define W , I − u1uH1 . If Tr(XW ) = 0, then X is rank-1. Thus by adding Tr(XW ) as a penalty term205 205

on the objective function of the SOCP formulation, we may enforce X to be rank-1.206 206

Note that W is also a variable. This makes the problem a bilinear problem. To solve this bilinear

11



problem, iterative approach can be implemented. Denote the problem including rank-1 penalty term as

F (X,W ) whose objective function includes an additional term ωTr(XW ) (ω is the penalty factor). We may

fix W to solve a convex problem and find X. Then for the given X, we may find W . Below is the iterative

procedure:

problem 1: F (X,W ∗)
 problem 2: F (X∗,W )

where W ∗ is the solution of the problem 2; X∗ is the solution of the problem 1. Consider our derivation207 207

from (11) to (14), it implies that for a fixed X∗, W can be found through eigenvalue-based decomposition208 208

of X∗.209 209

X∗ = UΛUH (15)

where Λ is a diagonal matrix with its elements eigenvalues, U is a unitary matrix, and its columns are the210 210

eigenvectors of X∗, i.e., U = [u1, u2, . . . , un]. Thus, problem 2 for iteration procedure is equivalent to:211 211

W = UUH − u1uH1 , ⇒W = U(:, 2 : n)U(:, 2 : n)H (16)

4.3. Sparse implementation212 212

Further, we seek sparse matrix-based implementation. The sparse convex relaxation solver does not give213 213

the full matrix X. According to Theorem 1, for the 3-node cycle-based convex relaxation, we only need to214 214

enforce all 2 × 2 submatrices related to lines and virtual lines rank-1 to achieve the exactness. Therefore,215 215

the rank penalty term Tr(XW ) can be replaced by:216 216

∑
i∈AL

Tr(X̂(i)Ŵ (i)) (17)

where AL is the set of all lines, including original lines and virtue lines, X̂i is the ith 2× 2 submatrix and217 217

Ŵ i can be found based on X̂i using (16).218 218

During the iterative procedure, some Tr(X̂(k)Ŵ (k)) term might not keep monotonic decreasing. This219 219

may lead to the increase of the ranks of those submatrices. To keep the submatrices rank-1 once they have220 220

reached rank-1 during iteration, we implement the following constraints to problem 1:221 221

Tr(X̂(i)Ŵ (i)) ≤ ε i ∈ DL (18)

12



where ε is tolerance, DL is the set for all submatrices that have achieved rank-1. The equivalent form of222 222

this constraint has been adopted in [12].223 223

Our experiments show that this constraint is capable to decrease the iterations for large size cases. E.g.

for nesta case1354 pegase and ω = 1000, with constraint (18), convex iteration can converge at 3 steps;

without constraint (18), convex iteration can not converge after 10 steps. The formulation of 3-node based

convex iteration is as follows.

problem 1 :

min f(Pg) + ω
∑
i∈AL

Tr(X̂(i)Ŵ ∗(i)) (19)

s.t. Constraints (6) (7b) ∼ (7h)

Tr(X̂(i)Ŵ ∗(i)) ≤ ε i ∈ DL

For all cliques MC

X̃(i) � 0 i ∈ SMC

problem 2 :

Ŵ ∗(i) = U (i)(:, 2)U (i)(:, 2)H i ∈ AL (20)

where U (i) is obtained through the eigenvalue decomposition of X̂∗(i): X̂∗(i) = U (i)Λ(i)U (i)H .224 224

The initial values of the iteration can be provided by the solution of Formulation (7).225 225

5. Numerical Examples226 226

Instances from the NICTA test archive [22] are tested using the proposed formulation. Additional in-227 227

stances with large gaps (case9mod, case39mod1, case300mod) are from [23]. We also implemented the228 228

method in [3] and [4] and developed a sparse SDP solver based on a chordal graph using Cholesky factor-229 229

ization. Cholesky factorization of a Hermitian semidefinite matrix A is defined as follows. PσAP
T
σ = LLT ,230 230

where Pσ is a permutation of the elements in A; L is a lower triangular matrix which is called Cholesky231 231

factor of A. The sparsity pattern for the chordal extension of A is the same with L + LT [3]. Moreover,232 232

to obtain minimal number of virtual lines, Pσ will permute the indexes of A based on the minimal degree233 233

ordering. Using Cholesy factorization, virtual lines of a power grid graph are found and added to achieve234 234

a chordal graph. Maximal cliques of the chordal graph are then found and the submatrices related to the235 235

maximal cliques are enforced to be PSD.236 236
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The cases were first solved by MATPOWER [20] to obtain feasible solutions as upper bounds. In addition,237 237

the cases were solved by the SDP solver developed by Lavaei’s group [7] (Solver A), the sparse SDP solver238 238

based on Cholesky factorization (Solver B), and the proposed solver (Solver C).239 239

We compare the computing time and solutions of the three solvers to demonstrate that (i) the gaps from240 240

the proposed solver is as tight as those from other sparse SDP solvers; (ii) the computing efficiency is higher241 241

compared with the two sparse SDP solvers. The number of virtual lines required for the three solvers, sizes242 242

of maximal cliques, and ranks of submatrices generated are all compared. To show the proposed relaxation243 243

solver is stronger than the SOCP solver, we compared the optimality gap of the proposed relaxation with244 244

one strengthen SOCP solver [9]. Finally, we select a few instances with nonzero gaps to demonstrate that245 245

convex iteration based on 3-node cycles can give rank-1 PSD solutions in those instances.246 246

In all tests, the gap is defined as: Gap = UB−LB
UB × 100%, where UB is the upper bound which is247 247

calculated through MATPOWER; LB is the lower bound of the objective value. In Table 3 and 4, LB is248 248

calculated by the relaxation solvers; in Table 5, LB is calculated by the convex iteration solver.249 249

5.1. Proposed Convex Relaxation250 250

Our numerical experiments are conducted on an Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30 GHZ (2251 251

processors) computer. All solvers are implemented in MATLAB 2017a-based CVX platform [24]. Mosek252 252

7.1.0.12 solver is invoked. To achieve the balance between the stability and accuracy, we adopt the Mosek253 253

setting of Solver A(tuned by Lavaei’s group). Although this setting may decrease the accuracy of the solution254 254

for large size cases, it provides the best stability for the Mosek solver (Mosek with default setting may fail to255 255

solve the cases which are larger than 2736 buses). In Table 4, we compared the proposed relaxation solver256 256

with the strengthen SOCP solver [9]. Because the test cases of reference [9] also comes from the NICTA test257 257

archive, we cited the results of [9] in Table 4. The numerical results from two SDP solvers and the proposed258 258

solver are listed in Table 3. In Table 3, columns A, B, C represent the three solvers; Max cliqueSize is the259 259

size of the largest clique; Max Rank means the maximum rank of submatrices; Solver Time is the optimizer260 260

terminate time of Mosek; N vline means the numbers of the virtual lines; Decomp Time is time cost on the261 261

cliques decomposition.262 262

According to Table 3, for small and median size cases from nesta case3 lmbd to nesta case300 ieee, Solver263 263

C obtains the same results as both or one of the two SDP solvers. For large size cases, Solver C has a gap264 264

slightly larger but a much higher computing efficiency. This is due to the following two facts. (i) The265 265

proposed method deals only 3-node cycles while the two SDP solvers deal with cliques with larger sizes. For266 266

example, for case nesta case3120sp mp, the size of the cliques reach 29 and 27 for Solver A and Solver B.267 267
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(ii) On the other hand, the proposed method adds less virtual lines compared to SDP solver B. For case268 268

nesta case3120sp mp, the number of virtual lines is 4527 for Solver B while it is 3153 for Solver C.269 269

The proposed relaxation solver is compared with the strengthen SOCP method [9] in Table 4. The table270 270

shows the optimiality gaps for two solvers. We can see performance of the proposed relaxation solver is271 271

better than the strengthen SOCP solver.272 272

We note that in Table 3, there are some cases showing different relaxation gaps between two SDP solvers,273 273

and Solver C showing tighter gaps than one of the SDP solvers. According [2], since both sparse SDP solver274 274

A and B are based on chordal graphs, their solutions are SDP OPF solutions and should be the same.275 275

Moreover, Solver C should have gaps greater than or equal to those from SDP. In our experiments, the276 276

reason of the numerical inconsistency is due to the configuration of Mosek. We tested some cases by CVX277 277

with SDPT3 in default setting, and listed the results in the Table 2. The results show SDP solver A and B,278 278

and solver C achieve the same gaps. However, as SDPT3 is much slower than Mosek, we use Mosek for all279 279

case studies.280 280

Remarks: The proposed convex relaxation solver achieves almost the same tightness of SDP solvers281 281

with a much higher computing efficiency. The computing time decreases at least 27% with an average of282 282

49%. Our method solves the dilemma mentioned in [2] that decreasing the size of submatrices results in283 283

increased virtual lines for sparse SDP. The proposed sparse convex relaxation solver can achieve almost the284 284

same tightness of SDP solvers with much higher computing efficiency.285 285

5.2. Rank-1 solution through convex iteration286 286

We tested 3-node cycle-based convex iteration method on several non-zero gap cases. In the experiments,287 287

we keep ε = 10−5 used in (18) for all cases. The results are listed in Table 5. Column Nlines is the sum288 288

of the numbers of lines and virtual lines in a graph; Niter is the number of iterations. In this Table, we289 289

apply maximum active and reactive power mismatch to show the feasibility of the solution, where superscript290 290

before means before convex iteration, and after means after convex iteration. The mismatches are calculated291 291

through the power balancing equations using the voltage phasor vector recovered from the solution of a sparse292 292

matrix X, where superscript sol means the solutions directly from Solver C with or without convex iteration;293 293

superscript rec means the solutions obtained through the recovered voltage phasors after the solutions from294 294

the proposed solver. V rec and θrec are the magnitude and angle of the recovered voltage phasor vector.295 295

The voltage vector recovering method in [2] is adopted in this project. First, we define the phase angle

of the voltage phasor at the reference node as 0◦; next, we identify the spanning tree of the power network,

and define the unique path from the reference node to the node i as Pi; then the voltage phasor at any node
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i can be recovered through the following equations.

V rec
i =

√
cii, θreci = −

∑
(j,k)∈Pi

∠(cjk − jsjk)

The results in Table 5 show that the proposed convex iteration is capable of decreasing maximum rank296 296

of submatrices. In Fig.3 we show that the rank error represented by
∑

Tr(X̂(k)Ŵ (k)) decreasing for two297 297

instances. According to Table 5, all 9 instances successfully achieve rank-1 , the power mismatches are close298 298

to 0, and gaps are non-negative. It means the recovered voltage vectors from the convex iteration solutions299 299

are feasible for the original AC OPF, and the objective value is not worse than the MATPOWER. We noted300 300

in Table 5, the gap for case9mod case is 22.89% while MaxRank is one. The reason of this situation is that301 301

the case9mod case has multi-local optimal solutions [23]. The MATPOWER which is based on the interior302 302

point method obtained one of the local optimal solution, while the convex iteration solver obtained another303 303

optimal solution which is closer to the global optimal.304 304

6. Conclusion305 305

In this paper, we proposed a 3-node cycle decomposition based sparse convex relaxation for AC OPF.306 306

We have shown that the 3-node cycle decomposition can not guarantee that the resulting graph is a chordal307 307

graph. However, the proposed relaxation can achieve the close tightness as SDP OPF solvers. On the other308 308

hand, our method has a clearly higher computing efficiency. In addition, we also investigated a practical309 309

application of the relaxed solution: finding a feasible AC OPF solution that is better than the one obtained310 310

from MATPOWER flat start. An efficient convex iteration implementation is investigated for the proposed311 311

sparse convex solver to achieve exactness or rank-1 solutions. Our experiment results show the feasibility of312 312

the implementation. A special case (case9mod) is used to demonstrate that the feasible solution found from313 313

convex iteration is better than the one obtained from MATPOWER flat start. Finding feasible solutions314 314

better than MATPOWER flat start is indeed of practical interest. Many research works have been carried315 315

out in this category. One other example is our work [25], which finds a local solution using interior point316 316

algorithm based on a starting point obtained from the proposed convex relaxation solver.317 317
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Figure 1: Chordal graph construction explanation.
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Figure 2: Topologies of IEEE 14-bus case and IEEE 30-bus. Blue solid lines represent the lines of the power grid. Highlighted
blue lines notate the edges related to cycles of more than 3 nodes. Dotted lines are the virtual lines added to decompose a
cycle into 3-node cycles. The solid magenta lines in the 30-bus case notates additional lines added to make the graph chordal.
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Table 1: Size of the largest maximal cliques

Test case size Test case size
nesta case3 lmbd 3 nesta case4 gs 2
nesta case5 pjm 3 nesta case14 ieee 3
nesta case30 ieee 3 nesta case57 ieee 3
nesta case118 ieee 4 nesta case300 ieee 3
nesta case1354 pegase 3 nesta case2383wp 3
nesta case2736sp mp 3 nesta case2737sop mp 3
nesta case2746wop mp 3 nesta case2746wp mp 3
nesta case3012wp mp 3 nesta case3120sp mp 3

Table 2: SDPT3 results

Case UB
Gap

A B C
nesta case300 ieee 16891.28 0.08% 0.08% 0.08 %

nesta case1354 pegase 74064.11 0.01% 0.01% 0.01 %
nesta case2736sp mp 1307961.70 0.00% 0.00% 0.00%
nesta case2737sop mp 777668.88 0.00% 0.00% 0.00%
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Table 3: Results comparison

Case UB
Gap(%) Solver Time Max cliqueSize Max Rank N vline Decomp Time

A B C A B C A B C A B C B C B C
nesta case3 lmbd 5812.64 0.41 0.39 0.39 0.58 0.30 0.48 3 3 3 2 2 2 0 0 0.02 0.02
nesta case4 gs 156.43 0.00 0.00 0.00 0.56 0.39 0.39 3 3 3 1 1 1 1 1 0.01 0.03
nesta case5 pjm 17551.89 5.22 5.23 5.22 0.90 0.37 0.45 3 3 3 2 2 2 1 1 0.02 0.02
nesta case14 ieee 244.05 0.00 0.00 0.00 0.59 0.42 0.51 3 3 3 1 1 2 4 4 0.01 0.02
nesta case30 ieee 204.97 0.00 0.00 0.00 0.58 0.42 0.41 4 4 3 1 1 1 14 14 0.03 0.03
nesta case57 ieee 1143.28 0.00 0.00 0.00 0.81 0.95 0.59 6 6 3 2 1 1 59 55 0.05 0.06
nesta case118 ieee 3689.92 0.07 0.07 0.09 1.34 1.78 1.34 5 5 4 2 2 3 87 73 0.12 0.33
nesta case300 ieee 16891.28 0.08 0.08 0.09 6.92 4.93 3.51 7 7 3 2 2 3 250 193 0.55 0.55

nesta case1354 pegase 74064.11 0.56 0.50 1.20 26.42 20.10 11.53 13 13 3 6 6 3 1020 698 1.13 3.79
nesta case2383wp mp 1870807.81 0.96 1.38 1.02 100.04 86.92 35.05 24 25 3 6 6 3 3269 2225 4.23 7.55
nesta case2736sp mp 1307961.70 28.01 27.77 27.94 36.53 37.00 11.54 24 25 3 6 6 3 3878 2810 5.79 8.26
nesta case2737sop mp 777668.88 11.84 11.37 11.37 23.40 25.07 18.21 24 24 3 6 6 3 3853 2814 5.91 8.22
nesta case2746wop mp 1208281.08 15.42 15.44 15.68 46.92 31.98 11.15 24 26 3 6 6 3 4103 2819 6.46 9.33
nesta case2746wp mp 1631868.17 28.89 28.92 29.37 47.82 23.07 9.91 25 26 3 6 6 3 3973 2800 6.04 8.57
nesta case3012wp mp 2600842.77 0.23 0.27 0.80 124.16 115.29 73.40 26 28 3 6 6 3 4407 3065 7.51 9.58
nesta case3120sp mp 2145965.33 0.33 0.86 0.46 172.45 118.98 81.20 29 27 3 6 6 3 4527 3153 7.91 9.74
nesta case30 fsr api 372.14 11.08 11.09 11.62 0.53 0.52 0.11 4 4 3 2 2 2 14 14 0.02 0.02

nesta case118 ieee api 6383.57 5.28 5.29 5.56 1.54 1.23 0.06 5 5 4 2 2 3 87 73 0.04 0.34
case9mod.m 4267.07 35.48 35.48 35.48 0.48 0.45 0.48 3 3 3 2 2 2 3 3 0.01 0.01
case39mod1 11221.00 3.72 3.72 3.72 0.45 0.53 0.04 4 4 3 2 2 2 21 21 0.02 0.06
case300mod 378540.50 0.14 0.14 0.14 5.27 4.37 0.06 7 7 3 3 3 3 250 193 0.12 0.66

Table 4: Comparison with one strengthened SOCP solver

Case UB
Gap(%)

Proposed Solver SOCP SDP[9]
nesta case3 lmbd 5812.64 0.39 1.27
nesta case4 gs 156.43 0.00 0.00
nesta case5 pjm 17551.89 5.22 9.08
nesta case14 ieee 244.05 0.00 0.00
nesta case30 ieee 204.97 0.00 0.29
nesta case57 ieee 1143.28 0.00 0.00
nesta case118 ieee 3689.92 0.09 1.51
nesta case300 ieee 16891.28 0.09 0.64

Table 5: Convex iteration results

case UB gap(%) Nlines Niter MaxRank Pbefore
mis Qbefore

mis P after
mis Qafter

mis ω

nesta case5 pjm 17551.89 0.00 7 2 1 0.57 2.17 6.27e-6 1.46e-5 28000
nesta case30 fsr api 372.14 0.08 55 5 1 6.89e-2 3.71e-2 3.81e-5 5.54e-5 1210

nesta case118 ieee api 6383.57 0.00 252 6 1 9.26 4.12 4.13e-4 5.25e-4 560
nesta case118 ieee 3689.92 0.00 252 4 1 5.80e-1 6.55e-1 2.36e-4 1.90e-4 22
nesta case300 ieee 16891.28 0.00 602 6 1 8.12e-1 4.64e-1 1.45e-4 1.87e-4 1000

nesta case1354 pegase 74064.11 0.00 2408 3 1 9.73e-1 6.61e-1 5.27e-4 2.05e-3 821.5
case9mod 4267.07 22.89 12 18 1 7.49e-3 2.59e-1 2.66e-9 1.03e-7 1e6

case39mod1 11221.00 0.00 67 19 1 9.92e-2 1.73 1.38e-6 1.53e-5 1.98e5
case300mod 378540.50 0.00 602 21 1 7.13 1.79 5.95e-5 5.71e-4 3.91e4
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