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Abstract—The objective of this paper is to rank phasor mea-
surement unit (PMU) measurements for oscillation monitoring
based on two approaches: oscillation mode observability and
Prony analysis. In the first approach, the system model is
assumed known and the critical oscillation mode observability of
different measurements are compared. In the second approach,
the dynamic model of the system is not known. Prony analysis
is employed to identify critical oscillation modes based on PMU
measurements. Measurements at different locations are compared
for their characteristics in Prony analysis. Specifically, singular
values of Hankel matrices are compared. The two approaches
lead to the same conclusion. Their internal connection is pre-
sented in this paper. As a step further, sensitivity analysis of model
order assumption and noise level in Prony analysis is conducted
to show singular values of Hankel matrices can indeed serve as
indicators of the quality of oscillation monitoring.

Index Terms—PMU measurements, Prony analysis, observabil-
ity, Hankel matrix, singular values.

I. INTRODUCTION

PHASOR measurement units (PMUs) have been put into
power grid for real-time monitoring. Using PMU data

to identify electromechanical oscillations has been studied in
the literature and an IEEE PES taskforce report [1] has been
published in 2012. For ringdown signals, or measurements
captured for a transient event, Prony analysis and Eigen-
system Realization Algorithm (ERA) are two measurement-
based identification methods [2]. More specifically, Prony
analysis has been introduced in power system oscillation mode
estimation in 1980s by J. Hauer [3]. As an extension, Prony
analysis based on multiple channel data was presented in [4].
In the authors’ prior work [5], multiple channel Prony analysis
was formulated as a weighted least squares estimation problem
with the weights obtained from single-channel Prony analysis.
The estimation accuracy shows significant improvement.

Prony analysis accuracy also depends on the specification of
system model order and sampling rate. Experiments have been
conducted on Prony analysis to show the influence of model
order and sampling rate on oscillation estimation accuracy [6].
The remarks on sampling rate influence on experiments in [6]
are corroborated based on the analysis carried out in [7].

The objective of this paper is to examine estimation accu-
racy of Prony analysis and relate the indicator of accuracy to
the physical system dynamic analysis.

Prony analysis is essentially to solve a least squares estima-
tion (LSE) problem notated as Da = Y where D is the Hankel
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matrix built upon measurements, Y is the measurement vector,
and a is the parameter vector to be found. Since the solution
of the overdetermined problem â is determined by the normal
equation: â = (DTD)−1DTY , a larger conditional number
of DTD (the ratio of the maximal singular value versus the
minimum) indicates a worse estimation accuracy. In ERA,
singular value decomposition (SVD) of Hankel matrices will
be conducted to construct dynamic system matrices. The above
information indicates that singular values of Hankel matrices
can give indication regarding estimation accuracy. A paper in
2013, indeed relies on SVD of Hankel matrices to judge PMU
placement for dynamic stability assessment [8].

To investigate how singular values of a Hankel matrix relate
to a physical system model, we use dynamic modeled-based
observability to rank measurements generated from a known
system model. The rank based on the observability will be
shown to match the rank based on Hankel matrix singular
values.

To this end, it is clear that the singular values of a Han-
kel matrix reflect signal observability of oscillation modes
and hence they provide reasonable indication of estimation
accuracy. Built upon this knowledge, we further studied the
sensitivity of system model order assumption and noise level
on estimation accuracy using the singular value plots.

The rest of the paper is organized as follows. Section II gives
a brief introduction on Prony analysis. Section III presents
modal decomposition based observability computation. Sec-
tion IV presents test case results using the two approaches:
observability computing based on a known dynamic model and
measurement-based Hankel matrix singular value computation.
Section V concludes the paper.

II. PRONY ANALYSIS

A. Prony Analysis

Consider a Linear-Time Invariant (LTI) system with the
initial state of x(0) = x0 at time t = 0 second. If the input is
removed from the system, the dynamic model can be expressed
as the follows.

ẋ(t) = Ax(t) (1)
y(t) = Cx(t) (2)

where y ∈ R is defined as the output of the system, x ∈ Rn
is the state of the system, A ∈ Rn×n and C ∈ R1×n are
system matrices. The order of the system is defined by n. If
the λi, pi, and qi are the i-th eigenvalue, the corresponding
right eigenvector, and left eigenvectors of A respectively, (1)
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can be represented as:

x(t) =

n∑
i=1

(qTi x0)pie
λit =

n∑
i=1

Rix0e
λit (3)

where Ri = piq
T
i is a residue matrix. Based on (2), the y(t)

can be expressed as:

y(t) =

n∑
i=1

CRix0e
λit. (4)

The observed or measured y(t) consists of N + 1 samples
which are equally spaced by ∆t as: y(tk) = y(k), k =
0, ..., N . (4) can be written in the exponential form as:

ŷ(tk) =

n∑
i=1

CRie
λik∆t =

n∑
i=1

CRiz
k
i , k = 1, ..., N (5)

where zi is the eigenvalues of the system in discrete time
domain and zi = eλi∆t.

Note that zi (i = 1, · · · , n) are the roots of the n-th
characteristic polynomial function of the system as follows.

zn − (a1z
n−1 + a2z

n−2 + ...+ anz
0) = 0. (6)

While the roots zi might be complex numbers, the system
polynomial coefficients ai are real numbers.

From (6), we have

zn = a1z
n−1 + a2z

n−2 + ...+ anz
0. (7)

A linear prediction model (8) can be formulated since y(k) is
the linear combination of zki based on (5). Therefore,

y(n) = a1y(n− 1) + a2y(n− 2) + ...+ any(0). (8)

Enumerating the signal samples from step n to step N , we
have (9): Y = Da.


y(n)

...
y(n+ k)

...
y(N)


︸ ︷︷ ︸

Y

=


y(n− 1) · · · y(0)

...
. . .

...
y(n+ k − 1) · · · y(k)

...
. . .

...
y(N − 1) · · · y(N − n)


︸ ︷︷ ︸

D


a1

...
ak
...
an


︸ ︷︷ ︸
a

(9)

The best estimate of a is found from the following normal
equation.

â = (DTD)−1DTY. (10)

B. Singular Value Decomposition of the D Matrix

The SVD of the D matrix of the Prony analysis is the
factorization of this matrix into the product of three matrices,
and can be expressed as follows.

D = UΣV ∗ (11)

The dimension of D is (N − n + 1) × n. where U is (N −
n+ 1)× (N − n+ 1) matrix, Σ is (N − n+ 1)× n diagonal
matrix of positive real singular values of matrix D, and V ∗ is
the conjugate transpose of V which is n × n matrix. U and

V are unitary matrices, and the diagonal matrix Σ is given by
the follows.

Σ =

[
Σ1

0

]
, n ≤ (N − n+ 1) (12)

where Σ1 is the diagonal of {σ1, σ2, · · · , σn}, and note that
σ1 ≥ σ2 ≥ · · · ≥ σn.

III. OBSERVABILITY OF MODES

A. Modal decomposition

The system matrix A has the following characteristic related
to an eigenvalue λi:

Avi = λivi (13)

where vi is right eigenvector associated with λi. Then (13)
can be represented as the following:

A
[
v1, v2, . . . , vn

]︸ ︷︷ ︸
V

=
[
λ1v1 λ2v2 . . . λnvn

]
= V Λ

(14)
where V is the right eigenvector matrix and Λ =
diag{λ1, · · · , λn}. We may further find

Λ = V −1AV (15)

A = V ΛV −1. (16)

The dynamic model can be expressed by the following:

ẋ(t) = V ΛV −1x(t) (17)

Define x̃ = V −1x (or x = V x̃), then the dynamic system
represented by X̃ is as follows.

˙̃x(t) = Λx̃(t), Or:
˙̃xi(t) = λix̃i(t)

(18)

The time domain expression of every element of the new
state vector x̃ can be found independently with the i-th
eigenvalue:

x̃i(t) = eλitx̃i(0) (19)

The output of the system will be expressed as the following:

y(t) = CV x̃(t) = CV

x̃1(0)eλ1t

...
x̃n(t)eλnt

 =

n∑
i=1

Ωix̃i(0)eλit

(20)
where Ω = CV is the observability row vector corresponding
to each eigenvalue.

From the output or measurement expression y(t), it can
be seen that for the same initial condition notated by x(0)
and further x̃(0), different measurements will have different
observability of each eigenvalue. Thus, Ω will be computed for
measurements and |Ωi| will be used to rank the measurements
based on their observability to the i-th eigenvalue.
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IV. CASE STUDIES

The two approaches for measurement ranking will be ap-
plied to two systems: the 2-area 4-machine case and the 16-
machine 68-bus system. The measurement data are generated
using the power system toolbox (PST) [9]. PST also has the
capability to conduct small-signal perturbation and give the
linear system matrices. The observability vectors are computed
based on the system matrices obtained. Though MATLAB’s
signal processing toolbox has a Prony analysis function that
can give a discrete system transfer function from a given time-
series signal, it does not provide the intermediate information
regarding Hankel matrix. As such, an in-house Prony analysis
toolbox developed for [5], [10] is utilized to conduct Prony
analysis, including least squares estimation to find coefficient
vector a, eigenvalue computing, and signal reconstruction.

A. Two-area four-machine system

The classic two-area four machine system for inter-area
oscillation study (shown in Fig. 1) is used for the first case
study. The four generators are assumed to have a second-order
swing dynamics each. Twenty seconds simulation is conducted
for a short-circuit transient event. The measurements are
resampled to have equal time steps.

 

Fig. 1: The two-area four machine test case in PST.

TABLE I
THE OBSERVABILITY APPROACH OF BUSES 1, 13, AND 101 WITH

DAMPING RATIO AND FREQUENCY OF THE 13-BUS SYSTEM.

Mode Observability Damping Ratio Frequency (Hz)
Bus 1 Bus 13 Bus 101

1 0.04 0.02 0.11 0.00 0.56
2 0.05 0.04 0.04 -0.00 1.20
3 0.03 0.05 0.06 0.00 1.21

a) Comparison of different signals: The sampling rate is
chosen to be 0.03 s. Three voltage signals for three different
buses (buses 1, 13, and 101) are selected. Research in [11] has
a given detailed analysis on interarea oscillation observability
for buses on a radial path. It is found that the bus located in
the middle of the path is shown to have the best observability.
In turn, Bus 101 is expected to have the largest absolute value
for its observability corresponding to the inter-area oscillation
mode.

This is confirmed by the observability analysis conducted
base on the linear system matrices. The observability along
with the damping ratio, and frequency of the system modes
are also presented in Table I. In this system, three oscillation
modes are identified and shown in Table I: 0.56 Hz inter-area
oscillation mode and two local oscillation modes at 1.20 Hz
and 1.21 Hz. We can see clearly that Bus 101 has a larger
observability on the 0.56 Hz mode than the other two buses.

It is known that the angle difference between the buses
located in two areas should better reflect inter-area oscillations
compared to the angle difference between two buses located
in the same area. In addition to the three voltage signals, three
angle difference signals are also selected: θ2−θ1, θ11−θ1, and
θ11 − θ12. Since PST does not give the measurement matrix
on the bus angles, the observability for angle differences is
omitted.
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Fig. 2: Singular values for the Hankel matrices related to the six
signals. The system order is 220.

The Hankel matrices D of the six selected signals are built
based on the simulation data. Fig. 2 shows the singular values
of the D matrices of the three voltage signals and the three
angle signals. It can be clearly seen that the singular values
related to Bus 101 (in the middle of the path) and the angle
difference of buses in two areas (θ11 − θ1) have singular
values on the top. On the other hand, angle difference for
two buses located in one area (θ11 − θ12) is on the bottom
of the chart. The singular value plots confirm that Bus 101’s
voltage magnitude and the angle between two areas have the
best observability of interarea oscillation mode.

Fig. 3 presents the reconstructed signals against the original
measurements (thin blue lines).

b) Comparison of model order assumption: For the angle
difference signal (θ11 − θ12) related to two buses in Area
2, Prony analysis with different model order assumptions are
carried out. The model order is assumed to be 50, 120 and 220,
respectively. The singular value plots of the corresponding
Hankel matrices are shown in Fig. 4.

The singular value plots clearly show that high-order results
in better estimation accuracy. This point has been recognized
generally (see [12] Chapter 10). The reconstructed signals are
presented in Fig. 5. It can be seen that high order assumption
results in better match between the reconstructed signal and
the original signal.
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Fig. 3: Comparison of the reconstructed signals against the original
measurements (thin blue lines).
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Fig. 4: Singular values for the Hankel matrices related to three
orders: 50, 120 and 220.
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Fig. 5: Comparison of the reconstructed signals against the original
measurements for different model order assumptions. Blue lines are
the original measurements while the red lines are the reconstructed
signals.

B. 16-Machine 68-Bus System

A larger power system, which is the 16-machine, 68-bus
system, is used to further validate that both of the observability
calculation and Prony analysis singular value examination lead
to the same findings. This system is a reduced model of the
New England Test System (NETS)-New York Power System

 

Fig. 6: 16-machine, 68-bus test case [13].

(NYPS) interconnected system [13] and has five areas. NETS
is represented by area 4 which has generators G1 to G9, while
NYPS is represented by area 5 which has generators G10 to
G13 as shown in Fig. 6. The other three areas have equivalent
generators G14 to G16.

Three voltage signals in different areas are chosen: Bus
5, Bus 29, and Bus 67. Their observability related to four
modes with lowest frequencies are computed and the results
are shown in Fig. 7. From this figure, it can be seen that
Bus 29 is more observable compared to Bus 5 and Bus 67
for the four modes. Among the four modes, modes 1 and 3
are identified as inter-area oscillation modes, with their mode
shape and participation factors shown in Fig. 8.
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Fig. 7: Observability of different buses. (a) Four low-frequency
modes. (b) Buses 5, 29, and 67 observability of the four indicated
modes.

The simulation data generated by PST is used for Prony
analysis. The system order are set to be n = 150 and the
sampling rate is defined to be 0.03 s. The singular values of
the Hankel matrix D of buses 5, 29, and 67 are shown in Fig.
9. The singular value plots show that Bus 29 will result in best
estimation accuracy. This finding corroborates with that from
the observability shown in Fig. 7.

The reconstructed signals are presented in Fig. 10. It can
be seen that the match of Bus 29 is better compared to that
of Bus 5.

c) Sensitivity analysis of noise level: Bus 29’s voltage
measurement is polluted with uniformly distributed random
noise. The singular value plots are generated (shown in Fig.
11) for the measurement with noise at signal noise ratio (SNR)
of 80 dB, 40 dB, and 20 dB. Note that PMU data usually has
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Fig. 8: Oscillation modes 1 and 3 participation factor of the 68-bus
system. (a)Compass plot of rotor speed of mode 1 and (b)mode 3.
(c)Real part of speed participation factor of mode 1 and (d)mode 3.
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Fig. 9: Singular values of the Hankel matrix corresponding to bus
voltage measurement at 5, 29, and 67.
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Fig. 10: Comparison of the reconstructed signals against the original
measurements. Blue lines are the original measurements.

a SNR at 40 dB [14]. It can be clearly seen that large noise
leads to inaccurate estimation.
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Fig. 11: Singular values of the Hankel matrix for different
noise levels.

V. CONCLUSION

This paper demonstrates that the singular values of the
Hankel matrix built for Prony analysis or ERA can serve as an
indicator for estimation accuracy. Signals with large observ-
ability also show large singular values. In addition, influence
of model order and noise level can also be demonstrated
by the singular values. Two test cases, which are the two-
area four-machine and the 16-machine 68-bus systems, are
used to illustrated the relationship between singular values and
dominant oscillation mode observability.

REFERENCES

[1] M. Crow, M. Gibbard, A. Messina, J. Pierre, J. Sanchez-Gasca, D. Trud-
nowski, and D. Vowles, “Identification of electromechanical modes in
power systems,” IEEE Task Force Report, Special Publication TP462,
2012.

[2] J. Sanchez-Gasca and J. Chow, “Computation of power system low-
order models from time domain simulations using a hankel matrix,”
IEEE Transactions on Power Systems, vol. 12, no. 4, pp. 1461–1467,
1997.

[3] J. F. Hauer, C. Demeure, and L. Scharf, “Initial results in prony analysis
of power system response signals,” IEEE Transactions on power systems,
vol. 5, no. 1, pp. 80–89, 1990.

[4] D. Trudnowski, J. Johnson, and J. Hauer, “Making prony analysis more
accurate using multiple signals,” Power Systems, IEEE Transactions on,
vol. 14, no. 1, pp. 226–231, 1999.

[5] L. Fan, “Data fusion-based distributed prony analysis,” Electric Power
Systems Research, vol. 143, pp. 634–642, 2017.

[6] N. Zhou, J. Pierre, and D. Trudnowski, “Some considerations in using
prony analysis to estimate electromechanical modes,” in Power and
Energy Society General Meeting (PES), 2013 IEEE. IEEE, 2013, pp.
1–5.

[7] J.-H. Peng and N.-K. Nair, “Adaptive sampling scheme for monitoring
oscillations using prony analysis,” IET generation, transmission &
distribution, vol. 3, no. 12, pp. 1052–1060, 2009.

[8] M. Dehghani, B. Shayanfard, and A. R. Khayatian, “Pmu ranking based
on singular value decomposition of dynamic stability matrix,” IEEE
Transactions on Power Systems, vol. 28, no. 3, pp. 2263–2270, 2013.

[9] J. H. Chow and K. W. Cheung, “A toolbox for power system dynamics
and control engineering education and research,” IEEE transactions on
Power Systems, vol. 7, no. 4, pp. 1559–1564, 1992.

[10] J. Khazaei, L. Fan, W. Jiang, and D. Manjure, “Distributed prony
analysis for real-world pmu data,” Electric Power Systems Research,
vol. 133, pp. 113–120, 2016.

[11] J. H. Chow, A. Chakrabortty, L. Vanfretti, and M. Arcak, “Estimation
of radial power system transfer path dynamic parameters using synchro-
nized phasor data,” IEEE Transactions on Power Systems, vol. 23, no. 2,
pp. 564–571, 2008.

[12] P. W. Sauer, M. Pai, and J. H. Chow, Power system dynamics and
stability: with synchrophasor measurement and power system toolbox.
John Wiley & Sons, 2017.

[13] G. Rogers, Power system oscillations. Springer Science & Business
Media, 2012.

[14] S. Brahma, R. Kavasseri, H. Cao, N. Chaudhuri, T. Alexopoulos, and
Y. Cui, “Real-time identification of dynamic events in power systems
using pmu data, and potential applicationsmodels, promises, and chal-
lenges,” IEEE Transactions on Power Delivery, vol. 32, no. 1, pp. 294–
301, 2017.


	Introduction
	Prony analysis
	Prony Analysis
	Singular Value Decomposition of the D Matrix

	Observability of Modes
	Modal decomposition

	Case Studies
	Two-area four-machine system
	16-Machine 68-Bus System

	Conclusion
	References

