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Summary

Phasor measurement units (PMUs) can obtain synchronized voltage and current phasors to increase the

accuracy of state estimation results. Optimal PMU placement (OPP) reduces the required number of PMUs

to make the system fully observable. In this paper, two mathematical programming formulations, which are

mixed integer linear programming (MILP) and nonlinear programming (NLP), for power grid observability

modeling to solve the OPP problem are presented. Power flow and zero injection measurement modeling

along with restricted communication facilities, PMU failure, and limited channel capacity contingencies

are investigated. MILP zero injection formulation is improved to overcome the observability redundancy

and optimality drawbacks. A new formulation for nonlinear programming-based PMU placement for zero

injection measurement is proposed. MILP and NLP methods are compared to illustrate the advantages and

disadvantages of each method. The comparison and proposed formulations are examined on IEEE 14-, 57-,

118-, 300-bus test systems and a large 2383-bus Polish system to demonstrate their effectiveness.

Keywords: Observability, linear programming, nonlinear programming, phasor measurement units, PMU

placement

1. Introduction

The power system is required to have a real-time monitoring of the system operating conditions to

enhance its security. In power grids, the measured bus voltage, currents, real and reactive power are

collected by remote terminal units at each substation. Those measurements are sent to a control center.

A control center then conducts state estimation to determine the best estimates of system’s state variables

(every node’s voltage magnitude and phase angle). Most recently, phasor measurement unit (PMU)-based

sensors are used to collect time-stamped measurements from global positioning system (GPS) [1, 2]. PMU

sensors obtain synchronized voltage and current phasors measurements at a faster rate of (30 ∼ 120 Hz) [3].

Hence, PMUs can give a superior situation awareness of the power grid. By installing a PMU at one bus, it
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can obtain the bus voltage phasor and all current phasors of the branches connected to that bus [4]. However,

placing PMU sensors at all buses of the system can be expensive and uneconomical. Therefore, optimal

PMU placement (OPP) problem should be solved to make the system entirely observable by installing less

PMU devices at specific buses.

Heuristic and mathematical programming techniques are used to solve the OPP problem. The heuris-

tic technique is based on search process to obtain the OPP. There are several heuristic-based techniques

that have been studied in the literature. A graph theory and simulated annealing algorithm to obtain the

minimum number of PMU sensors are developed in [5]. Then other heuristic-based approaches have been

proposed such as simulated annealing with Tabu search [6], spanning tree [7], genetic algorithm [8], nondom-

inated sorting genetic [9], Tabu search genetic [10], particle swarm optimization approach [11], and recursive

Tabu search [12]. An immunity genetic algorithm [13] and binary particle swarm optimization [14, 15] are

used to solve the OPP problem.

Heuristic-based OPP does not guarantee a global optimum solution. Hence, two major mathemati-

cal programming approaches are developed in the literature: MILP and NLP. While MILP formulations

guarantee a global optimum solution, NLP formulations provide several local minimum solutions.

Integer linear programming (ILP) to obtain the OPP is introduced in [2, 4]. Several algorithms and

techniques considering integer linear programming and contingency-constrained PMU placement are devel-

oped in [16, 17, 18, 19, 20, 21, 22]. In [23], ILP is used with auxiliary variable to find the OPP in case of

zero injection. The same method considering conventional measurements is developed in [24]. Zero injection

redundancy limitation and global optimal solution considering mutual buses are presented in [25]. Reference

[26] proposes an integer quadratic programming approach. A weighted least square algorithm using nonlin-

ear observability constraint is presented in [27]. Nonlinear programming (NLP) formulations are introduced

in [28]. This type of formulations has been explored under several contingencies in [29, 30]. In [31], MILP

and NLP comparison is conducted using a simple system, and limitation of zero injection formulation for

NLP is discussed. However, zero injection formulation in nonlinear programming-based PMU placement has

not been properly solved in the literature.

In this paper, modeling power grid observability to solve the OPP problem is implemented using two

different approaches which are MILP and NLP. Power flows, zero injections, restricted communication facili-

ties, PMU failure, and limited channel capacity are discussed. A new nonlinear programming formulation for

zero injection is proposed. The proposed formulation is examined by validating the results with the MILP

formulation. MILP and NLP comparison is conducted to illustrate their advantages and disadvantages.
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The main contributions of this paper can be summarized as follows. First, a new effective zero injection

formulation in nonlinear programming is proposed and validated to provide minimum number of PMUs

compared to other papers. Second, MILP zero injection formulation is improved to solve the observability

redundancy and optimality drawbacks. Third, two mathematical programming methods are compared under

several contingencies applied to different IEEE test systems, and the proposed zero injection formulations

are evaluated on a large 2383-bus Polish system.

The rest of this paper is organized as follows. Sections 2 and 3 present MILP and NLP formulations.

Section 4 proposes the effective power flow and zero injection measurement formulations and investigates

the aforementioned contingencies. Section 5 concludes the paper.

2. Mixed Integer Linear Programming

Power system state estimation with a DC power flow is analyzed in this paper, and (1) presents the

linear measurement function which maps the state to the measurement.

z = Hx+ e (1)

where z represents the measurement vector, H is the measurement matrix, x is the state variable vector,

and e is the error measurement vector. The state variables are the voltage phase angle for each bus in the

power system. The PMUs can obtain the measurements including the voltage phase angle (θi) of Bus i

and the power flow from Bus i to Bus j, where j ∈ adi represents the adjacent buses to Bus i. Thus, the

PMU will measure θi, and θj can be obtained as the power flow Pij is measurable. Therefore, Bus i with

its adjacent buses are observable when a PMU is installed only at Bus i.

In other words, Bus i itself can be observable with at least a single PMU placed at this bus or one of its

adjacent buses. This is can be represented by the following inequality:

fi(x) = xi +
∑
j∈adi

xj ≥ 1 (2)

where fi(x) is the observability function for Bus i, xi is a binary decision variable to install a PMU at Bus

i (xi = 1) or not (xi = 0), and xj is the binary decision variable for the buses adjacent to that bus.

The OPP for the IEEE 14-bus system (shown in Fig. 1) [32] is formulated as MILP and solved by

MATLAB’s intlinprog function. The OPP result indicates that only four PMUs can be installed on buses
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2, 8, 10, and 13 to make the system entirely observable. Generalized MILP for the OPP problem can be

expressed as [4]:

min
x

N∑
k=1

wk xk (3a)

subject to: Ax ≥ B (3b)

xi ∈ {0, 1}, i = 1, · · · , N (3c)

where xi is the binary decision, and wk is the PMU placement cost. It is assumed that the PMUs have

the placement cost wi = 1 making the PMU placement cost minimization equivalent to the number of PMUs

minimization. Entries of A and the B matrices are:

a(i, j) =


1, Bus i and Bus j are connected

1, i is equal to j

0. Otherwise

B =

[
1 1 · · · 1

]T

3. Nonlinear Programming

OPP problem can be formulated and solved using nonlinear programming (NLP) which based on se-

quential quadratic programming (SQP) [27, 28]. NLP method can produce more than one solution to the

OPP problem, while the MILP formulation can provide a single solution.

For NLP, xi is considered as a continuous decision variable rather a binary variable as the MILP formu-

lation. Therefore, xi is forced to be 1 or 0 by the following constraint: xi(xi − 1) = 0.

The quadratic objective function, which represents the overall PMU placement cost, is minimized by

the NLP formulation subjected to nonlinear equality constraints. The decision variables are 0 and 1 which

indicate the lower and upper bounds of the problem formulation. Hence, the nonlinear constraints can

assure the complete observability of the system [27, 28].
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The NLP formulation for the OPP problem can be expressed as:

min
x

J(x) = xTWx =

N∑
k=1

wk x
2
k (4a)

s.t.: gi(x) = ( 1− xi)
∏

j∈adi

( 1− xj) = 0 (4b)

0 ≤ xi ≤ 1, for all i ∈ S (4c)

where J(x) represents the OPP objective function, xT is the transposed vector of x, W is the diagonal

weight matrix, adi indicates the adjacent buses of Bus i, and S represents the system buses set.

This NLP formulation is a nonconvex optimization problem since a number of local minimum solutions

can result in using the nonlinear equality constraints [28], and it is solved by sequential quadratic pro-

gramming (SQP) algorithm. As a consequence, several solutions for the OPP problem can be obtained by

choosing different initial conditions x.

The IEEE 14-bus system [32] as shown in Fig. 1 is used as an example to solve the OPP problem with

the NLP formulation, and the NLP and MILP solutions are compared to each other. It is assumed that the

weight of all PMUs is wi = 1 to make the installation cost minimization equivalent to the number of PMUs

minimization. The MATLAB’s function fmincon is used to solve this nonconvex optimization problem with

NLP formulation and SQP solver.

The NLP obtains various solutions to the OPP problem based on the initial points x. Therefore, the

initial points are programmed to be random numbers in the feasible region between the upper and lower

bounds of one and zero. As a result, optimal solutions are found after several iterations:

x =

[
0 1 0 0 0 0 0 1 0 1 0 0 1 0

]T
, x =

[
0 1 0 0 0 0 1 0 0 1 0 0 1 0

]T
, x =

[
0 1 0 0 0 0 1 0 0 0 1 0 1 0

]T
,

x =

[
0 1 0 0 0 1 0 1 1 0 0 0 0 0

]T
, and x =

[
0 1 0 0 0 1 1 0 1 0 0 0 0 0

]T

The above solutions indicate that the OPP buses are the following five sets: {2, 8, 10, 13}, {2, 7, 10, 13},

{2, 7, 11, 13}, {2, 6, 8, 9}, or {2, 6, 7, 9}. Note that the first optimal solution is the same as the MILP solution.

Thus, NLP is another effective algorithm to solve the OPP problem by obtaining various optimal solutions

to select from. MILP and NLP comparison for the OPP problem is conducted using four different systems

which are IEEE 14-, 57-, 118-, and 300-bus systems [32] as shown in Table 1.
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4. OPP Case Studies

4.1. Power Flow Measurements

Suppose that Branch ij in the system has a meter to measure the power flow. In the case that one of

the state variables of Bus i or j (θi or θj) is measured, the state variable of the other bus can be provided

since the power flow (Pij) is known.

4.1.1. MILP and NLP Approaches

With the information of the power flows, the observability constraints must be reformulated to find the

optimal solution. If the power flow measurement on Branch k of Bus i and Bus j is known, the MILP

constraints are modified to be a joint observability constraint as follows [4, 18].

fflow,k = fi + fj ≥ 1 (5)

Constraint (5) indicates that if Bus i or Bus j is observable, the other bus can also be observable since

the power flow of Branch k is given.

Similarly, the observability constraints of the nonlinear programming must be reformulated to find the

optimal solution with the measured power flow. Therefore, the observability constraints of Bus i and Bus j

are modified to be a joint observability constraint as the following [29]:

gflow,k = gigj = 0 (6)

Constraint (6) can result in high orders since several terms of ( 1−xi) can be produced with multiplying

the constraints of Bus i and Bus j [29]. Hence, the resulted terms with high orders will be treated as a first

order term since this constraint has a zero right hand side.

4.1.2. Power Flow Measurement Example

Suppose that the power flow measurements for the IEEE 14-bus system (Fig. 1) [32] are on branches

2− 3, 3− 4, 6− 11, 6− 12, and 7− 8. For Branch 2− 3, the joint constraint (5) is applied since there are

power flows on branches 2− 3 and 3− 4 as the following:

fflow,2−3,3−4 = f2 + f3 + f4 ≥ 1

= x1 + 3x2 + 3x3 + 3x4 + 2x5 + x7 + x9 ≥ 1
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Joint constraint fflow,2−3,3−4 means that only one of the buses 2, 3, and 4 must be observable to make

the other buses observable since the power flows are known. Hence, this joint constraint meets the minimum

requirement of installing at least a single PMU at one of those buses or at the buses adjacent to them. The

other branches are formulated in a similar way to obtain the joint constraints.

For the nonlinear programming, joint constraint (6) is applied to the three observability functions due

to the power flows on branches 2− 3 and 3− 4 as follows.

gflow,2−3,3−4 = g2g3g4 = 0

= ( 1− x1)( 1− x2)( 1− x3)( 1− x4)( 1− x5)( 1− x7)( 1− x9) = 0

Table 2 shows the results of the OPP for power flow case. The number of PMUs in this case is reduced

due to the power flow meters. Table 3 presents the location of the power flow measurement branches.

4.2. Zero Injection Measurements

A four-bus system as illustrated in Fig. 2 is used to easily demonstrate the zero injection case. Assume

that Bus ` has a zero injection measurement. The power injection and the voltage phase angles of the four

buses are related to each other as the following:

Pinj,l =
θl − θi
Xli

+
θl − θj
Xlj

+
θl − θk
Xlk

= 0 (7)

If the power injection and three of the phase angles are known, the fourth phase angle can be measured.

Therefore, three buses have to be observable to make the fourth one observable with the help of the installed

PMU and the zero injection at Bus `. This requirement is formulated using the MILP as [4]:

finj,l = fi + fj + fk + fl ≥ 3 (8)

When one of the observability functions (fi, fj , fk, or fl) equals to zero, then the joint constraint (8)

meets the zero injection requirement. Nevertheless, this joint constraint may result in two drawbacks. First,

adding the observability functions can produce a redundancy for certain buses which can make the constraint

(8) satisfied with two zero observability functions [25]. A six-bus system (shown in Fig. 3) is employed to
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explain the drawbacks of the constraint (8). Assume that Bus 2 has a zero injection measurement. Three

buses (1, 3, and 5) are adjacent to Bus 2. Thus, the MILP constraints for this system will be as follows.

finj,2 = f1 + f2 + f3 + f5 ≥ 3

= 3x1 + 4x2 + 2x3 + x4 + 3x5 + 2x6 ≥ 3

f4 = x3 + x4 ≥ 1, f6 = x1 + x3 + x6 ≥ 1

From the above constraints, the OPP can be on buses 3 and 4 (i.e. f1 = 0, f2 = 1, f3 = 2, f4 = 2,

f5 = 0, and f6 = 1) which leaves buses 1 and 5 unobservable. Note that the two buses 1 and 5 cannot be

observable even with the help of zero injection measurement since two out of four buses are unobservable.

Therefore, the system complete observability is not guaranteed in some configuration. Recently, it has been

clarified in [25] that fi cannot be guaranteed to be 0 or 1 which is the main reason of this limitation. Thus,

the authors propose a formulation to keep the right hand side equals to 1 which can solve the redundant

observability of some buses. Then the joint constraint (8) is reformulated as follows.

finj,l =

{
fi + fj ≥ 1, fi + fk ≥ 1, fi + fl ≥ 1, fj + fk ≥ 1, fj + fl ≥ 1, fk + fl ≥ 1 (9)

The observability constraint (9) guarantees complete observability since it can be satisfied if at most one

of the observability constraints (fi, fj , fk, or fl) is zero. Solving the same problem using (9), the optimal

PMU placement can be on buses 3 and 6 which leaves Bus 5 unseen by the PMUs but can be observable

with the help of zero injection measurement at Bus 2.

In addition to the redundant observability, the joint constraint (8) cannot obtain the optimum solution

if there are two or more zero injections with mutual buses [25]. Assume that there are zero injections at

Bus 1 and Bus 3 in the six-bus system (shown in Fig. 3). The adjacent buses to Bus 1 are buses 2, 5, and

6, while the adjacent buses to Bus 3 are buses 2, 4, and 6. In this case, Bus 2 and Bus 6 are mutual buses,

then MILP constraints using (8) can as the following:

finj,1 = f1 + f2 + f5 + f6 ≥ 3

= 4x1 + 3x2 + 2x3 + 3x5 + 2x6 ≥ 3

finj,3 = f2 + f3 + f4 + f6 ≥ 3

= 2x1 + 2x2 + 4x3 + 2x4 + x5 + 2x6 ≥ 3
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Theses constraints can be satisfied using at least two PMUs (e.g. placement at Bus 1 and Bus 3), while

this problem can be satisfied using only one PMU at Bus 2. Note that by placing a single PMU at Bus 2,

Bus 4 and Bus 6 are unseen by the PMU but can be observable with the zero injections at Bus 1 and Bus

3. Therefore, the optimal solution may not be provided using the joint constraint (8). This problem can

be solved using (9) with some modification [25]. Suppose that Bus 1 and Bus 3 have zero injections in the

six-bus system (Fig. 3). The MILP constraints using (9) will be as follows.

finj,1 =

{
f1 + f2 ≥ 1, f1 + f5 ≥ 1, f1 + f6 ≥ 1, f2 + f5 ≥ 1, f2 + f6 ≥ 1, f5 + f6 ≥ 1

finj,3 =

{
f2 + f3 ≥ 1, f2 + f4 ≥ 1, f2 + f6 ≥ 1, f3 + f4 ≥ 1, f3 + f6 ≥ 1, f4 + f6 ≥ 1

Then mutual observability functions in the left-hand side of finj,1 and finj,3 have to be merged. In this

paper, the MILP formulation is improved by solving the optimality limitation with less constraints as the

following:

finj,1 and 3 =


f1 + f2 + f3 ≥ 1, f1 + f2 + f4 ≥ 1, f1 + f3 + f6 ≥ 1, f1 + f4 + f6 ≥ 1,

f2 + f3 + f5 ≥ 1, f2 + f4 + f5 ≥ 1, f3 + f5 + f6 ≥ 1, f4 + f5 + f6 ≥ 1,

f1 + f5 ≥ 1, f3 + f4 ≥ 1, f2 + f6 ≥ 1

These constraints can obtain the OPP by placing a single PMU at Bus 2 after merging the mutual

observability functions. With zero injections at Bus 1 and Bus 3, observability can be assured for Bus 4 and

Bus 6. The number of constraints in [25] to solve the six-bus system is 16 compared to 11 in this paper.

This reduction in the number of the constraints is significant for solving large systems.

For the NLP formulation, the equivalent has not been addressed adequately. The zero injection joint

constraint for NLP in [29] is not equivalent to (8) or (9). It indicates that the zero injection bus and its

adjacent buses are observable if one of them is observable. As a consequence, this constraint can result in

unobservable buses. In this paper, the equivalent in nonlinear programming formulation is proposed.

Once Bus ` has a zero injection measurement (Fig. 2), for this particular case, then we need at least any
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3 buses among all 4 buses to be observable to guarantee a complete observability.

That is, the following six constraints should be satisfied.

ginj,l =

{
gigj = 0, gigk = 0, gigl = 0, gjgk = 0, gjgl = 0, gkgl = 0 (10)

Suppose that Bus 2 has a zero injection in the six-bus system (shown in Fig. 3). Buses 1, 3, and 5 are

adjacent buses to Bus 2. The NLP constraints will be as follows.

ginj,2 =

{
g1g2 = 0, g1g3 = 0, g1g5 = 0, g2g3 = 0, g2g5 = 0, g3g5 = 0

g4 = (1− x3)(1− x4) = 0

g6 = (1− x1)(1− x3)(1− x6) = 0

Then an optimal solution can be achieved by installing PMUs on Bus 3 and Bus 6 (i.e. g1 = 0, g2 = 0,

g3 = 0, g4 = 0, g5 = 1, and g6 = 0 ) which makes Bus 5 cannot be seen by the PMUs but can be observable

with the help of Bus 2 zero injection measurement.

Then suppose that Bus 1 and Bus 3 have zero injections in the same aforementioned system. The NLP

constraints with the mutual buses will be as follows.

ginj,1 and 3 =


g1g2g3 = 0, g1g2g4 = 0, g1g3g6 = 0, g1g4g6 = 0,

g2g3g5 = 0, g2g4g5 = 0, g3g5g6 = 0, g4g5g6 = 0,

g1g5 = 0, g3g4 = 0, g2g6 = 0

From these constraints, the optimal PMU placement can be at Bus 2. Note that buses 4 and 6 are

observable with the zero injection measurements at buses 1 and 3.

Thus, both MILP and NLP joint constraints for zero injection measurements can be satisfied if at most

one of the observability constraints (zero injection bus or its adjacent buses constraints) is zero. Also, these

joint constraints guarantee complete observability and optimal solution to the problem. Table 4 and Table

5 show the location of the zero injections and the results of the zero injection case for MILP and NLP,

respectively.
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4.3. Limited Communication Facility

PMUs need to communicate with the control center through data links at the substations to provide

the measurements of synchronized voltage and current phasors. Therefore, a substation with limited com-

munication facility can obstruct the PMU placement. With restricted communication problem, the PMU

placement cost will be increased [33]. Hence, the placement cost wi for MILP and NLP will be increased for

any bus with limited communications. As a result, this high placement cost can omit the limited commu-

nication buses from the optimal solution [29]. Suppose that Bus 2 and Bus 9 have limited communication

facilities on the IEEE 14-bus system (shown in Fig. 1) [32]. Then the placement costs of Bus 2 and Bus 9

are increased to be wi = 109. Table 6 shows the results of the limited communication facility case.

4.4. Single PMU Failure

Even though the PMUs have a high reliability, there is a chance of a single PMU failure. To assure

the complete observability of the system, main and backup sets are obtained. The optimal PMU solution

without taking the PMU failure into account is the main set, whereas the backup set is generated in case

of a PMU failure. The right hand side of the MILP constraints can be modified to be two to let each bus

observed by two PMUs [16]. Instead, the main set terms xi and xj of the MILP constraints can be removed

to generate the backup set. Likewise, the main set terms ( 1 − xi) and ( 1 − xj) of the NLP constraints

are removed to provide the backup set [29]. Therefore, the buses in the main set will not be selected again,

and the backup set will assure the complete observability of the system when a one PMU fails.

IEEE 14-bus system (Fig. 1) main set is obtained as in Section 2 and Section 3, and then MILP and

NLP main set can be the following: {2, 8, 10, 13}. Therefore, all of the terms x2, x8, x10, and x13 of MILP

constraints are ignored to generate the backup set. Similarly, all of the terms ( 1−x2) , ( 1−x8) , ( 1−x10) ,

and ( 1− x13) are removed from the NLP constraints.

After solving the problem, the resulted backup set for the MILP is {1, 4, 6, 7, 9}, whereas the backup sets

for the NLP formulation are {1, 4, 6, 7, 9}, {1, 3, 6, 7, 9}, {3, 5, 6, 7, 9}, or {4, 5, 6, 7, 9}. From Table 7, we can

see that the single PMU failure case would double the total minimum number of PMUs due to the backup

set.

4.5. Limited PMU Channel Capacity

The OPP has been solved supposing that all PMUs have enough channels to make all adjacent buses

observable. In reality, PMUs are made to have a different number of channels with different prices [19]. In

this section, the OPP is analyzed in case that we have PMUs with limited channel capacity.
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Let’s assume that the number of adjacent buses to Bus i (mi) is larger than the PMU channel capacity

(c). The number of line combinations (Cc
mi

) is given as follows [29, 30].

Cc
mi

=
mi!

c!(mi − c)!
(11)

Then the observability constraints are changed for both MILP and NLP to meet the possible line com-

binations. Note that if the number of adjacent buses to Bus i is less than or equal to the number of channel

capacity, the observability constraint of Bus i is kept the same.

Let’s assume that we have PMUs with limited channel capacity where c = 3 for the 14-bus system (Fig.

1). Then the observability constraints are changed as follows.

At Bus 1:

The adjacent buses are 2 and 5 which means that m1 = 2 and c > m1. Thus, we have enough channels

for this bus, and the constraints f1 and g1 are kept the same.

At Bus 2:

The adjacent buses are 1, 3, 4, and 5 which means that m2 = 4 and c < m2. Thus, the number of

line combinations is 4, and they are {2 − 1, 2 − 3, 2 − 4}, {2 − 1, 2 − 3, 2 − 5}, {2 − 1, 2 − 4, 2 − 5}, and

{2− 3, 2− 4, 2− 5}. Then the observability constraint for Bus 2 is changed as follows.

For MILP:

f2,1 = x2 + x1 + x3 + x4 ≥ 1, f2,2 = x2 + x1 + x3 + x5 ≥ 1

f2,3 = x2 + x1 + x4 + x5 ≥ 1, f2,4 = x2 + x3 + x4 + x5 ≥ 1

For NLP:

g2,1 = ( 1− x2)( 1− x1)( 1− x3)( 1− x4) = 0, g2,2 = ( 1− x2)( 1− x1)( 1− x3)( 1− x5) = 0

g2,3 = ( 1− x2)( 1− x1)( 1− x4)( 1− x5) = 0, g2,4 = ( 1− x2)( 1− x3)( 1− x4)( 1− x5) = 0

Then the process is repeated for the rest of buses to make sure that each constraint has only three

adjacent buses. Table 8 shows the limited channel capacity case results.
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4.6. Remarks on OPP Problem Simulation Results

MILP and NLP comparison is conducted using different IEEE test case systems. Five case studies,

which are Power flows, zero injections, limited communications, PMU failure, and limited PMU channels,

are formulated using MILP and NLP approaches. A new formulation for zero injection using NLP is

presented and examined. MATLAB’s intlinprog function is used to solve the MILP, while NLP is solved

by MATLAB’s fmincon function with SQP solver. The initial values are chosen as random numbers in the

feasible region. In a large-scale system, the initial values should be designed carefully to make the NLP

converge to the minimum point. The total number of the initial values should not exceed 45% of total

number of buses. Then some of the initial values can be designed with different random numbers to achieve

several solutions. The nonlinear constraints tolerance can be varied from 10−4 to 10−12 to get the least

number of PMUs. From Table 1, we can see that NLP obtains the least number of PMUs as same as MILP.

NLP can also provide several solutions to the OPP problem. One of the NLP optimal sets matches the MILP

solution. On the other hand, the computational time of the MILP is less than the NLP. Table 9 presents

the average CPU time for both MILP and NLP on different IEEE systems. From Table 2 and Table 5, it

can be seen that the number of PMUs in both methods is reduced to be less than the general case because

of the power flow measurements and zero injection measurements, respectively. On the contrary, more

PMUs are resulted in the restricted communication and PMU failure cases as shown in Table 6 and Table

7. A backup set is generated for the single PMU failure case which would increase the PMU installation

cost. It should be noted that the number of PMUs would be reduced if power flows and zero injections are

considered in this case. To validate the effectiveness of the NLP zero injection formulation, a comparison

of several algorithms results for zero injection case is shown in Table 10. For further analysis, the proposed

zero injection formulations for MILP and NLP are evaluated on a large 2383-bus Polish system provided

by MATPOWER [34] as can be seen from Table 11. Therefore, MILP and NLP approaches are effective to

work out the OPP problem, and they can provide the same results.

5. Conclusion

Power grid observability modeling to tackle the OPP problem is presented using two approaches. MILP

and NLP formulations for the OPP problem are demonstrated for complete observability. Nonlinear pro-

gramming has an advantage of providing several optimal solutions compared to the MILP method. However,

mixed integer linear programming has less CPU time compared to the nonlinear programming. MILP zero

injection formulation is enhanced to solve the redundancy and optimality limitations. A new zero injection
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formulation for nonlinear programming is developed. Power flows, zero injections, limited communication

facilities, PMU failure, and limited channel capacity case studies are demonstrated for the two methods.

MILP and NLP advantages and disadvantages are discussed.

List of Symbols

z Measurement vector
H Measurement matrix
e Error vector
j Adjacent bus to Bus i
adi Set of buses adjacent to Bus i
θi, θj Voltage phase angles of buses i and j
Pij Real power flow measurement from Bus i to Bus j
Pinj,l Real power injection measurement at Bus l
Xij Reactance of the line i− j
fi Observability constraint function of Bus i for MILP
gi Observability constraint function of Bus i for NLP
x PMU placement vector
xi PMU placement binary decision variable of Bus i
A Binary connectivity matrix
B Vector of all-ones
T Transpose operator
J(x) Objective function of vector x
W Diagonal cost matrix
wi PMU Installation cost at Bus i
S Set of system buses
Cc

mi
Number of line combinations

c Channel capacity
mi Number of adjacent buses to Bus i
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Table 1: OPP results using MILP and NLP/SQP.

IEEE Test
Number of

Number of
System

PMUs
NLP Solutions

MILP NLP

14-bus 4 4 5
57-bus 17 17 19
118-bus 32 32 10
300-bus 87 87 8

Table 2: Power flow measurements case results.

IEEE Test Number of
Number of

Number of
System Flow Branches

PMUs
NLP Solutions

MILP NLP

14-bus 5 3 3 11
57-bus 40 6 6 5
118-bus 31 24 24 5
300-bus 43 81 81 4

Table 3: Branches of power flow measurements.

IEEE Test
Branches of Flow Measurements

System

14-bus 2-3,3-4,6-11,7-8,6-12

57-bus 1-2,1-15,1-16,1-17,3-15,4-5,4-6,4-18,7-29,
29-52,8-9,9-10,10-12,10-51,12-13,51-50,

11-41,11-43,41-42,42-56,14-46,47-46,
19-20,20-21,22-38,38-37,38-44,38-48,
49-38,23-24,24-25,24-26,27-26,28-27,
30-31,32-34,34-35,36-35,40-36,53-54

118-bus 1-3,3-5,6-7,8-9,11-13,16-17,20-21,23-25,
23-32,32-114,27-28,34-43,35-36,41-42,
47-46,49-50,50-57,51-52,56-58,60-62,
65-68,68-116,71-73,76-77,77-82,82-83,

86-87,90-91,95-96,99-100,110-112

300-bus 1-3,3-4,6-7,8-11,11-13,15-16,21-22,24-25,
25-26,32-35,37-38,40-68,68-174,46-47,
50-51,55-56,70-71,77-84,84-86,95-103,

108-112,120-125,136-138,145-265,
156-157,160-166,166-167,173-198,
198-216,216-220,182-190,184-185,

200-202,208-209,88-235,64-239,2-248,
17-252,109-263,270-292,270-296,

269-288,294-300
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Table 4: Zero injection measurement locations.

IEEE Test
Zero Injection Measurement Buses

System

14-bus 7
57-bus 4,7,11,21,22,24,26,34,36,37,39,40,45,46,48
118-bus 5,9,30,37,38,63,64,68,71,81
300-bus 17,58,233,256,294

Table 5: Zero injection case results.

IEEE Test Number of
Number of

Number of
System Zero Injections

PMUs
NLP Solutions

MILP NLP

14-bus 1 3 3 1
57-bus 15 11 11 6
118-bus 10 28 28 4
300-bus 5 82 82 2

Table 6: Limited communication facility case results.

IEEE Test Limited
Number of

Number of
System Communication Buses

PMUs
NLP Solutions

MILP NLP

14-bus 2,9 5 5 11
57-bus 1,4,9,15 17 17 10
118-bus 2,9,11,12,17 35 35 8
300-bus 2,9,11,64,111, 277,299,300 92 92 4

Table 7: Single PMU failure results.

IEEE Test
Number of

Number of
System

PMUs
NLP Solutions

MILP NLP

14-bus 9 9 4
57-bus 35 35 4
118-bus 75 75 2
300-bus 221 221 2

Table 8: Limited channel capacity case results.

IEEE Test Number of
Number of

Number of
System Channels

PMUs
NLP Solutions

MILP NLP

14-bus 3 4 4 1
57-bus 4 17 17 4
118-bus 6 32 32 3
300-bus 7 87 87 3
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Table 9: MILP and NLP CPU time comparison.

Case IEEE Test System
CPU Time (s)

MILP NLP

None

14-bus 0.0313 0.1563
57-bus 0.0469 0.9375
118-bus 0.0781 9.9063
300-bus 0.0938 49.7656

Power Flow Measurements

14-bus 0.0313 0.0781
57-bus 0.0469 0.4844
118-bus 0.0625 6.7500
300-bus 0.0938 43.3750

Zero Injection Measurements

14-bus 0.0313 0.0938
57-bus 0.0469 0.8423
118-bus 0.0781 6.7969
300-bus 0.1094 43.2344

Limited Communication Facility

14-bus 0.0313 0.0781
57-bus 0.0469 0.6406
118-bus 0.0625 6.3906
300-bus 0.0938 44.5469

Single PMU Failure

14-bus 0.0313 0.0781
57-bus 0.0469 0.8438
118-bus 0.0625 6.7969
300-bus 0.0938 45.4063

Limited Channel Capacity

14-bus 0.0313 0.0938
57-bus 0.0469 13.2188
118-bus 0.0781 25.6875
300-bus 0.1250 64.5313
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Table 10: Comparison results of zero injection using different methods.

Method
IEEE Test System

14-bus 57-bus 118-bus

ILP [2] 3 12 29
TS [10] 3 13 -
GA [8] 3 12 29
NSG [9] - - 29
PSO [11] 3 11 28
ILP [17] 3 13 29
SA [5] 3 11 -
ILP [16] 3 14 29
ILP [23] 3 11 28
ILP [25] 3 11 28
NLP [29] 3 13 29
Proposed MILP 3 11 28
Proposed NLP 3 11 28

Table 11: OPP results for a large 2383-bus Polish system.

Case Bus
Number of

Number of
CPU

Location
PMUs

NLP Solutions
Time (s)

MILP NLP MILP NLP

None — 746 746 8 0.9531 2.1607×103

Zero Injection 43,220,1185,1486 740 740 7 1.0156 2.1393×103

Measurements 1871,2054,2086,
2196,2259,2285
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