Comparison of Islanding and Synchronization for a Microgrid with Different Converter Controls

Abdulhakim Alsaif, Dr. Zhixin Miao, Dr. Lingling Fan

Smart Grid Power Systems Lab
Department of Electrical Engineering
University of South Florida

October 14, 2019
Comparison of Islanding and Synchronization for a Microgrid with Different Converter Controls

Outline

- Introduction
- Work description
- Simulation & results.
- Conclusion
- Reference
Operation modes of microgrids.
Main scope:

A comparison of microgrid performance during islanding and synchronization when different voltage source converter (VSC) controls are adopted.

1. An overview of VSC controls, namely: 1) grid-following, 2) grid-forming, and 3) grid-supporting.

2. A Comparison of microgrid performance is conducted in two testbeds built in MATLAB/SimPowerSystem environment. The two testbeds are compared side by side for their dynamic performance.
Overview of VSC controls

1. Grid-Following VSC:

- **Active & reactive power at the PCC are controlled by tuning the converter AC current.**

- Also, **DC voltage & the PCC voltage** could be regulated.

- It is operated as a **current source** [7].

- A synchronization mechanism “PLL” is required in order to be **synchronized** with the grid by extracting the grid frequency and PCC voltage angle θ_{PLL}.

Fig. 1: Schematic control structure of grid-following VSC
2. Grid-Forming VSC:

- It is operated in MGs as the source of voltage & frequency control by regulating the AC current of the converter.
- It is operated as an ideal AC voltage source [2].
- It is similar to the grid-following control structure except the outer loop.

Fig. 2: Schematic control structure of grid-forming VSC.
3. Grid-Supporting VSC:

- It can operate either in grid-connected mode or autonomous mode.
- No need to re-configuration the converter control.
- Droop controls are implemented on top of a grid-following control structure.
- It can contribute controlling the MG voltage, frequency, active & reactive power at the PCC through its droop design, in both modes:

\[
\begin{align*}
 f - f^* &= -m(P - P^*) \\
 V - V^* &= -n(Q - Q^*)
\end{align*}
\]

Fig. 3: Schematic control structure of a grid-supporting VSC.
Two testbeds built in MATLAB/SimPowerSystem as follows:

Testbed 1.
A VSC switches back and forth between *grid-following* and *grid-forming* control during islanding and synchronization “grid-connected mode”.

Testbed 2.
A VSC works in *grid-supporting* mode regardless of the microgrid operation mode.

Fig.4: an *islanding scheme* and a *grid-back detection scheme* are designed to automatically switch the operation modes of the VSC.
The testbeds parameters:

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid side</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer 1</td>
<td>T_1</td>
<td>400 kVA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>260 V \ 25 kV</td>
</tr>
<tr>
<td>Transformer 2</td>
<td>T_2</td>
<td>400 kVA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 kV \ 120 kV</td>
</tr>
<tr>
<td>Transmission line</td>
<td>R_L, X_L</td>
<td>0.1X_L, 0.2 pu</td>
</tr>
<tr>
<td>DG side</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated power</td>
<td>S_b</td>
<td>400 kVA</td>
</tr>
<tr>
<td>Rated voltage</td>
<td>ac/dc</td>
<td>260/500 V</td>
</tr>
<tr>
<td>Converter filter</td>
<td>R_f</td>
<td>0.156/50 pu</td>
</tr>
<tr>
<td></td>
<td>X_f</td>
<td>0.156 pu</td>
</tr>
<tr>
<td>Shunt capacitor</td>
<td>C_f</td>
<td>0.25 pu</td>
</tr>
<tr>
<td>Load</td>
<td>fixed load</td>
<td>300 Kw</td>
</tr>
</tbody>
</table>

Reference control settings: \(P_{pcc}^* = 1 \text{ pu} \quad V_{pcc}^* = 1 \text{ pu} \quad \omega^* = 60 \text{ Hz} \)
Simulation & Results

- **Comparison #1: Grid-connected mode to Autonomous mode:**
 - Three phase fault occurs in the transmission line at 1 s.
 - Islanding mode is detected after 3 ms.

Testbed # 1: grid-following / grid-forming

Testbed # 2: grid-supporting

\[\Delta \omega = 0.475 \text{ Hz} \]
Comparison #1: Grid-connected mode to Autonomous mode:

- Active power responses: converter output, load, and grid.
- The VSC injects a fixed active power (400 Kw) to the load (300 Kw) and the grid (100 Kw).

Testbed #1: grid-following / grid-forming

\[P_{pcc}^* = 1 \text{ pu} \]
\[P_{\text{Load}} = 0.75 \text{ pu} \]
\[P_{\text{grid}} = 0.25 \text{ pu} \]

Grid-connected mode

\[P_{pcc}^* = 1 \text{ pu} \]
\[P_{\text{Load}} = 0.75 \text{ pu} \]
\[P_{\text{grid}} = 0 \]

Autonomous mode

Testbed #2: grid-supporting

\[P_{pcc}^* = 1 \text{ pu} \]
\[P_{\text{Load}} = 0.75 \text{ pu} \]
\[P_{\text{grid}} = 0.25 \text{ pu} \]

Grid-connected mode

\[P_{pcc}^* = 1 \text{ pu} \]
\[P_{\text{Load}} = 0.75 \text{ pu} \]
\[P_{\text{grid}} = 0 \]

Autonomous mode

generates \(\Delta \omega \)
Comparison #2: Autonomouse mode to Grid-connected mode:
- Three phase fault is cleared at 5 s.
- The operation mode is switched back to grid-connected mode at 5.37 s in testbed 1 and 5.11 s in testbed 2.

Testbed #1: grid-following / grid-forming

Testbed #2: grid-supporting

\[\Delta \omega = 0.475 \text{ Hz} \]
Comparison #2: Autonomous mode to Grid-connected mode:

- Synchronization process between the VSC system and the grid in both testbeds:

 Testbed #1: grid-forming / grid-following

 Testbed #2: grid-supporting

- The Gridback detection signal switches the frequency mode from free-running frequency by VCO to the PLL frequency (*imposed by the grid*).
Comparison #2: **Autonomous mode** *Grid-connected mode*:

- Active power responses: converter output, load, and grid.
- The VSC injects a fixed active power (400 Kw) to the load (300 Kw) and the grid (100 Kw).

Testbed #1: *grid-forming \ grid-following*

- \(P_{pcc} = 1 \text{ pu} \)
- \(P_{Load} = 0.75 \text{ pu} \)
- \(P_{grid} = 0 \)

Autonomous mode

Testbed #2: *grid-supporting*

- \(P_{pcc} = 1 \text{ pu} \)
- \(P_{Load} = 0.75 \text{ pu} \)
- \(P_{grid} = 0.25 \)

Grid-connected mode
Conclusion

- The simulation results of switching from one operation to another operation, namely, islanding and re-synchronization, are examined.

- Compared to either the grid-following or grid-forming VSCs, grid-supporting VSC has the advantage of operating in the both operation modes without changing control configuration.

- The droop control has been identified as an effective tool to participate in regulating the frequency, voltage, and power of the microgrid.

Thank You
For Your Attention

Questions ?