Comparison of Islanding and Synchronization for a Microgrid with Different Converter Controls

Abdulhakim Alsaif, Dr. Zhixin Miao, Dr. Lingling Fan

Smart Grid Power Systems Lab Department of Electrical Engineering University of South Florida

51st North American Power Symposium

Outline

Comparison of Islanding and Synchronization for a Microgrid with Different Converter Controls

Introduction

➤Work description

Simulation & results.

Conclusion

Reference

> Operation modes of microgrids.

Work Description

Main scope:

A comparison of microgrid performance during <u>islanding</u> and <u>synchronization</u> when different voltage source converter (VSC) controls are adopted.

- 1. An overview of VSC controls, namely: 1) grid-following, 2) grid-forming, and 3) grid-supporting.
- 2. A Comparison of microgrid performance is conducted in two testbeds built in MATLAB/SimPowerSystem environment. The two testbeds are compared side by side for their dynamic performance.

Overview of VSC controls

1. Grid-Following VSC:

- Active & reactive power at the PCC are controlled by tuning the <u>converter AC current</u>.
- Also, DC voltage & the PCC voltage could be regulated.
- ➢ It is operated as a <u>current source</u> [7].
- A synchronization mechanism "PLL" is required in order to be *synchronized* with the grid by <u>extracting</u> the grid frequency and PCC voltage angle θ_{PLL} .

Fig. 1: Schematic control structure of grid-following VSC

Overview of VSC controls

2. Grid-Forming VSC:

- It is operated in MGs as the source of voltage & frequency control by regulating the AC current of the converter.
- ➢ It is operated as an ideal <u>AC voltage source [2]</u>.
- It is similar to the grid-following control structure *except* the outer loop.

Fig. 2: Schematic control structure of grid-forming VSC.

Overview of VSC controls

3. Grid-Supporting VSC:

- It can operate either in grid-connected mode or autonomous mode.
- No need to re-configuration the converter control.
- Droop controls are implemented on top of a grid-following control structure.
- It can contribute controlling the MG voltage , frequency, active & reactive power at the PCC through its droop design, in both modes:

$$f - f^* = -m(P - P^*)$$

 $V - V^* = -n(Q - Q^*)$

Fig. 3: Schematic control structure of a grid-supporting VSC.

Two testbeds built in MATLAB/SimPowerSystem as follows:

Testbed 1.

A VSC switches back and forth between *grid-following* and *grid-forming* control during islanding and synchronization "grid-connected mode".

Testbed 2.

A VSC works in *grid-supporting* mode regardless of the microgrid operation mode.

Fig.4: an **islanding scheme** and a **grid-back detection** scheme are designed to automatically switch the operation modes of the VSC.

> The testbeds parameters:

	Description	Parameters	Value
Grid side	Transformer 1	T_{I}	400 kVA
			$260 \ V \setminus 25 \ kV$
	Transformer 2	T_2	400 kVA
			$25 \text{ kV} \setminus 120 \text{ kV}$
	Transmission line	R_L , X_L	$0.1 \mathrm{X_L}$, $0.2 \mathrm{pu}$
DG side VSC	Rated power	S_b	400 kVA
	Rated voltage	ac/dc side	260/500 V
	Converter filter	R_{f}	0.156/50 pu
		X_{f}	0.156 pu
	Shunt capacitor	C_{f}	0.25 pu
Load	fixed load	L	300 Kw

** Reference control settings: $P_{pcc}^* = 1 pu$ $V_{pcc}^* = 1 pu$ $\omega^* = 60 Hz$

Comparison #1: *Grid-connected* mode to *Autonomous* mode:

- Three phase fault occurs in the transmission line at **1** s.
- Islanding mode is detected after **3** ms.

Testbed # 1: grid-following / grid-forming

Testbed # 2: grid-supporting

10

Comparison #1: *Grid-connected* mode to *Autonomous* mode:

- Active power responses: converter output, load, and grid.
- The VSC injects a fixed active power (400 Kw) to the load (300 Kw) and the grid (100 Kw).

Testbed # 1: grid-following / grid-forming

Testbed # 2: grid-supporting

Comparison #2: Autonomous mode to Grid-connected mode :

• Three phase fault is cleared at **5** s.

Testbed # 1: grid-following / grid-forming

• The operation mode is switched back to grid-connected mode at **5.37** *s* in testbed 1 and **5.11** *s* in testbed 2.

Testbed # 2: grid-supporting

Comparison #2: Autonomous mode to Grid-connected mode :

• Synchronization process between the VSC system and the grid in both testbeds:

Testbed # 1: grid-forming / grid-following

• Frequency is extracted by the PLL in

13

both modes of operation.

• The Gridback detection signal switches the frequency mode from free-

running frequency by VCO to the PLL frequency (*imposed by the grid*).

Comparison #2: Autonomous mode Grid-connected mode :

- Active power responses: converter output, load, and grid.
- The VSC injects a fixed active power (400 Kw) to the load (300 Kw) and the grid (100 Kw).

- > The simulation results of switching from one operation to another operation, namely, islanding and re-synchronization, are examined.
- Compared to either the grid-following or grid-forming VSCs, grid-supporting VSC has the advantage of operating in the both operation modes without changing control configuration.
- The droop control has been identified as an effective tool to participate in regulating the frequency, voltage, and power of the microgrid.

- [1] G. Pepermans, J. Driesen, D. Haeseldonckx, R. Belmans, and W. Dhaeseleer, "Distributed generation: definition, benefits and issues," *Energy policy*, vol. 33, no. 6, pp. 787–798, 2005.
- [2] J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodriguez, "Control of power converters in ac microgrids," *IEEE transactions on power electronics*, vol. 27, no. 11, pp. 4734–4749, 2012.
- [3] M. Liserre, A. Pigazo, A. Dell'Aquila, and V. M. Moreno, "An antiislanding method for single-phase inverters based on a grid voltage sensorless control," *IEEE Transactions on Industrial Electronics*, vol. 53, no. 5, pp. 1418–1426, 2006.
- [4] J. M. Carrasco, L. Garc'ıa Franquelo, J. T. Bialasiewicz, E. Galv'an, R. C. Portillo Guisado, M. d. l. A'. Mart'ın Prats, J. I. Leo'n, and N. Moreno Alfonso, "Power-electronic systems for the grid integration of renewable energy sources: A survey," *IEEE Transactions on Industrial Electronics*, 53 (4), 1002-1016., 2006.
- [5] L. Fan, Control and dynamics in power systems and microgrids. CRC Press, 2017.

- [6] B. Kroposki, B. Johnson, Y. Zhang, V. Gevorgian, P. Denholm, B.-M. Hodge, and B. Hannegan, "Achieving a 100% renewable grid: Operating electric power systems with extremely high levels of variable renewable energy," *IEEE Power and Energy Magazine*, vol. 15, no. 2, pp. 61–73, 2017
- [7] A. Yazdani and R. Iravani, *Voltage-sourced converters in power systems: modeling, control, and applications*. John Wiley & Sons, 2010.
- [8] F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, "Overview of control and grid synchronization for distributed power generation systems," *IEEE Transactions on industrial electronics*, vol. 53, no. 5, pp. 1398–1409, 2006.
- [9] N. Mohan, T. M. Undeland, and W. P. Robbins, *Power electronics: converters, applications, and design*. John wiley & sons, 2003.
- [10] S.-I. Jang and K.-H. Kim, "An islanding detection method for distributed generations using voltage unbalance and total harmonic distortion of current," *IEEE transactions on power delivery*, vol. 19, no. 2, pp. 745–752, 2004.

Thank You For Your Attention

Questions ?

