

Data-Driven Dynamic Model Identification for Synchronous Generators

Authors: Zhengyu Wang, Lingling Fan, Zhixin Miao Presented by: Zhengyu Wang

Smart Grid Power System Laboratory

University of South Florida

51st North American Power Symposium

- Introduction
 - Motivation
 - Objectives
- Input/output Identification Model
 - Synchronous generator model derivation
 - System identification for generator parameters
 - Case study
- Output Only Identification Model
 - Single generator to infinity bus model derivation
 - Grey-box model building
 - Case study
- Q&A

• Introduction

- Motivation
- Objectives
- Input/output Identification Model
 - Synchronous generator model derivation
 - System identification for generator parameters
 - Case study
- Output Only Identification Model
 - Single generator to infinity bus model derivation
 - Grey-box model building
 - Case study
- Q&A

- Motivation
 - ➤ As the major work horse in the modern power grid for electricity generation, synchronous generators are important
 - > Accurate estimation of the generator parameters is important and of practical interest
 - With a large amount of Phasor Measurement Units (PMUs) installed in the power grid, the measurement data is easier than ever to be collected and analyzed
- Objectives
 - PMU-based data-driven system identification methods may be applied for dynamic model parameter estimation
 - Achieve the accurate parameter estimation of synchronous generator via collected time-series data from dynamic model simulation

- Introduction
 - Motivation
 - Objectives
- Input/output Identification Model
 - Synchronous generator model derivation
 - System identification for generator parameters
 - Case study
- Output Only Identification Model
 - Single generator to infinity bus model derivation
 - Grey-box model building
 - Case study
- Q&A

- Synchronous generator model derivation
 - ➤ Small signal dynamic model

$$\begin{cases} \Delta \dot{\delta} &= \omega_0 \Delta \omega \\ \Delta \dot{\omega} &= \frac{1}{2H} (\Delta P_m - \Delta P_e - D_1 (\Delta \omega - 1)) \\ \Delta \dot{P_m} &= \frac{1}{T_g} (\Delta P_{\text{ref}} - \frac{1}{R} \Delta \omega - \Delta P_m) \end{cases}$$

> State-space model after discretization at step size of "h"

$$\begin{bmatrix} \Delta \delta_{k+1} \\ \Delta \omega_{k+1} \\ \Delta P_{m_{k+1}} \end{bmatrix} = \underbrace{ \begin{bmatrix} 1 & \omega_0 h & 0 \\ 0 & 1 - \frac{D_1 h}{2H} & \frac{h}{2H} \\ 0 & -\frac{h}{T_g R} & 1 - \frac{h}{T_g} \end{bmatrix} }_{A} \begin{bmatrix} \Delta \delta_k \\ \Delta \omega_k \\ \Delta P_{m_k} \end{bmatrix} + \underbrace{ \begin{bmatrix} 0 \\ -\frac{h}{2H} \\ 0 \end{bmatrix} }_{B} \Delta P_{e_k}$$

Input/output relationship on z-domain

$$\frac{y}{u} = C(zI - A)^{-1}B,$$
$$\Rightarrow A(z)y = B(z)u$$

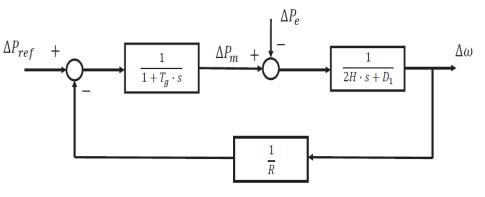


Fig. 1 Block diagram of synchronous generator with primary frequency droop control small signal model.

> ARX model's denominator and numerator

$$A(z) = 1 + a_1 z^{-1} + a_2 z^{-2}$$

$$B(z) = b_1 z^{-1} + b_2 z^{-2}$$

• System identification for generator parameters

> Over-determined problem formulation

$$\underbrace{\begin{bmatrix} y(k+2) \\ \cdot \\ \cdot \\ y(i) \\ \cdot \\ \cdot \\ y(N) \end{bmatrix}}_{Y} = \underbrace{\begin{bmatrix} y(k+1) & y(k) & u(k+1) & u(k) \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ y(i-1) & y(i-2) & u(i-1) & u(i-2) \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ y(N-1) & y(N-2) & u(N-1) & u(N-2) \end{bmatrix}}_{X} \cdot \underbrace{\begin{bmatrix} -a_1 \\ -a_2 \\ b_1 \\ b_2 \end{bmatrix}}_{X}$$

Solve the over-determined problem by LSE method

$$X = (\lambda^T \cdot \lambda)^{-1} \cdot \lambda^T \cdot Y$$

Parameters recovery from estimated ARX model coefficients

$$\begin{split} H &= -\frac{h}{2 \cdot b_1} \qquad \qquad D_1 = -\frac{b_1 - b_2 + a_1 \cdot b_1}{b_1^2} \\ T_g &= \frac{b_1 \cdot h}{b_1 + b_2} \qquad \qquad R = -\frac{b_1^2 \cdot (b_1 + b_2)}{a_2 \cdot b_1^2 - a_1 \cdot b_1 \cdot b_2 + b_2^2} \end{split}$$

• Case study

▶ IEEE 2 Area Test Case from Power System Toolbox by Dr. Joe Chow and Dr. Graham Rogers

> Dynamic event is a three-phase fault on load bus 1.

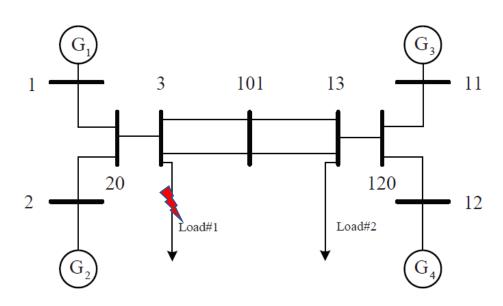
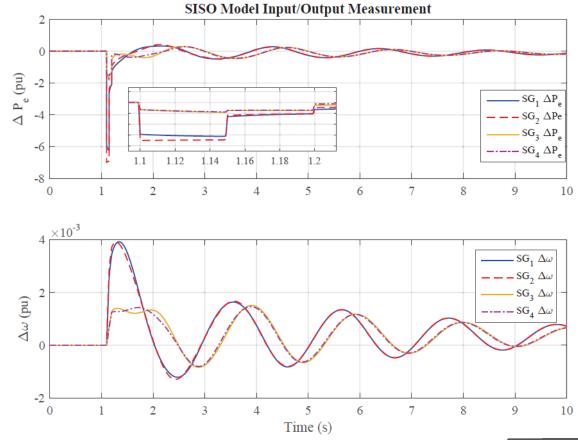



Fig. 2: 2 Area 4 Machine Dynamic Systems

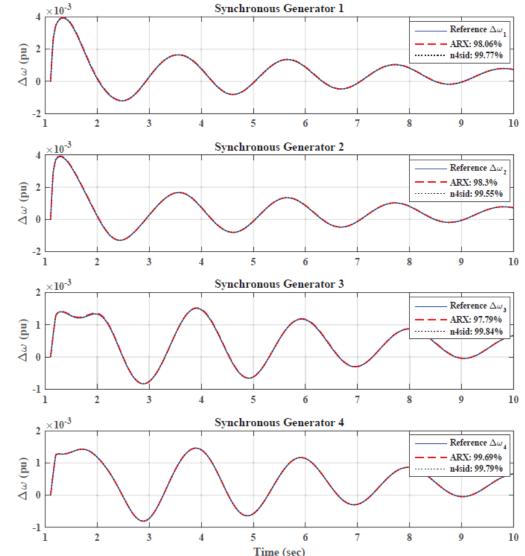
Note: to ensure the quality of estimation, resampling of data is essential.

• Case study (Cont.)

Reference values of parameters and coefficients

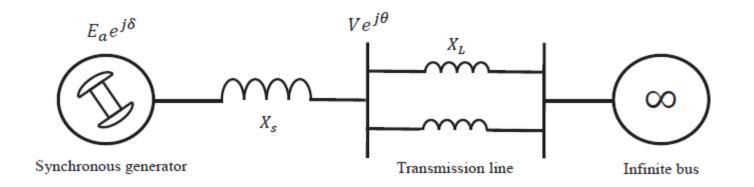
Parameter	Reference Value	Parameter	Reference Value
H	58.5	D_1	54
T_g	0.25	R	0.004444
Coefficient	Reference Value	Coefficient	Reference Value
a_1	-1.995538	a_2	0.995548
b_1	-8.547009E-6	b_2	8.512821E-6

≻ ARX-based LSE estimation VS. N4SID toolbox


		ARX-base LSE		n4sid	
Coefficient	Reference	Estimation	Error rate (%)	Estimation	Error rate (%)
a_1	-1.995538	-1.995535	0.00015	-1.995549	0.00055
a_2	0.995548	0.995545	0.00030	0.995559	0.00110
b_1	-8.5470E-6	-8.5879E-6	0.4774	-8.5792E-6	0.37674
b_2	8.5128E-6	8.5534E-6	0.4769	8.5452E-6	0.3806
Parameter	Reference	Estimation	Error rate (%)	Estimation	Error rate (%)
Н	58.5	58.2212	0.4789	58.2805	0.3752
D_1	54	52.0740	3.5667	57.2394	5.9989
T_g	0.25	0.2489	0.4223	0.2520	0.8
R	0.004444	0.004535	1.9918	0.004578	3.0153

- Case study (Cont.)
 - Dynamic response replay
 - Both method estimated parameters are capable to accurately repeat the same dynamic behaviors of each generator in the event.

Note: it is important to ensure the scales of input/output signals are at the same level to have accurate estimation.



- Introduction
 - Motivation
 - Objectives
- Input/output Identification Model
 - Synchronous generator model derivation
 - System identification for generator parameters
 - Case study
- Output Only Identification Model
 - Single generator to infinity bus model derivation
 - Grey-box model building
 - Case study
- Q&A

• Single generator to infinite bus model derivation

> Based on circuit analysis, the small signal model is derived as follows.

Output Only Identification Model

• Grey-box model building

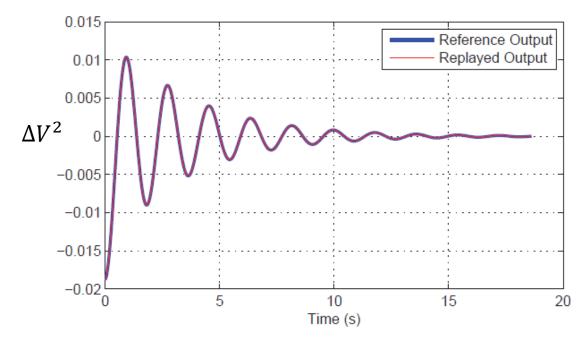
To apply Grey-box toolbox for system identification, the state-space model structure formed by parameters is required.

> Then, to inject data for parameter estimation, the system identification toolbox data management function is required to form the data in proper way.

```
data = iddata(y,[],h)
sys = idgrey(odefun, initials, fcntype);
sysest = greyest(data, sys),
```


Output Only Identification Model

- Case Study
 - ➢ Without input signal, a set of initial values are assigned to the state variables to start running the derived small signal model.
 - ➢ With the output data collected from the model running, the parameter identification is performed via Grey-box estimation.


A =			_	_
x1 x2 -8.88 x3	x1 1 1e-06 0	x: 0.37 0.999 -0.4	7 3 1.35	x3 0 55e-05 1
C = y1 -0.04		2 0	x3 0	
Model par Par1 = 0.	ameters: 01355	Par5 =	0.0027	74
	6847 50 		7.987	1
Status: Estimated data "da		REYEST o	n time	domain
	stimation 34e-09, MS			

Output Only Identification Model

- Case Study (Cont.)
 - With estimated parameters obtained from Grey-box estimation, the dynamic response replay is performed. The plot below shows the comparisons between the original output data from running the state-space model and output signal data from running the model with estimated parameters.
 - Comparison shows great match, which means the parameter identification via Grey-box estimation method with output signal only is effective and accurate.

Thank you !

