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Abstract—Due to the complexity of modeling the actual dy-
namic large-scale power system, free-equation model identifi-
cation techniques have been found more practical. Recently,
Dynamic Mode Decomposition (DMD) has been proposed and
used in fluid dynamics and brain modeling. In power systems,
DMD applications just kick off. This paper reviews the DMD
algorithm and implements DMD for mode identification and
signal reconstruction in three power system related applications:
RLC circuit dynamics, phasor measurement unit (PM) measure-
ments of unknown system, and ac voltage waveform polluted by
harmonics. The last application shows that DMD can also replace
fast Fourier transformation (FFT) to identify harmonics.

Index Terms—Dynamic mode decomposition, DMD, system
identification, power system oscillations.

I. INTRODUCTION

Power system oscillations exist in a grid that has in-
terconnected synchronous generators. Damper windings are
installed in units’ rotors to reduce the oscillation amplitudes
[1]. Oscillations may occur due to sudden events such as faults,
outages, or even major load changes. They also lead the system
to the same unwanted events. Since they adversely affect the
system reliability, they must be addressed and mitigated.

Power system oscillations can be identified by two methods
[2]. The first method relies on the system model. Detailed
analysis on the dynamic system characteristics, e.g. system
state-space and eigenvalues, may reveal the system oscillation
modes [3], [1]. Due to the difficulty of modeling real-world
power systems, it is practical and faster to implement the
second method that provides the possibility identify the model
from its measurements. Furthermore, after identifying the
system using the data-driven approach, control strategies can
be implemented on the identified system to ensure stable
operation. Classical ringdown analysis methods in power sys-
tems are Prony [4], [5], [2], Matrix Pencil (MP) [6], [5],
Eigensystem Realization Algorithm (ERA) [7].

A recent method called Dynamic Mode Decomposition
(DMD) has been proposed in fluid field and brain modeling
area [8], where it was used to decompose the high-dimensional
data into spatial and temporal structures. The DMD algorithm
is a combination of several techniques [9]: proper orthogonal
decomposition (POD), Fourier transform, Koopman operator,
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least-square, and singular value decomposition (SVD). Some
of the DMD applications are following. First, the DMD has the
ability to decompose the spatial and temporal dynamic modes.
This advantage of DMD is almost not found in the other
model identification methods. The spatiotemporal decompo-
sition yields deep understanding of the transient dynamic
behavior. Second, the system dynamical model is constructed
based on the dominant spatiotemporal structures. The current
system state can be achieved from the dynamical model.
Further, the future state may be predicted. Third, since the
DMD has the prediction ability, there is a chance of applying
control strategies on the system.

The scope of this paper is to use DMD to identify the
dynamic mode from measurements.

Reference [10] applies DMD under the consideration of
setting the given data in pairs of n-dimensional vectors, rather
than the time sequential series. In the same reference, the
authors compare the DMD with two other system identification
techniques that are eigensystem realization algorithm (ERA)
and linear inverse modeling (LIM). DMD has been conducted
on diverse applications such as fluid experiments [11], fore-
ground/background video separation [12], flows around a high-
speed train [13], and financial trading strategies [14].

The first appearance of applying the DMD on power sys-
tems is in [15]. The authors exploit the DMD to extract the
spatial and temporal modes of inter-area grid oscillations. In
[16], DMD is implemented in voltage and frequency measure-
ments of western interconnection.

The aim of this paper is to provide a concise review of DMD
algorithm and further demonstrate DMD implementation in
power system applications. The first case study of our work is
to implement DMD to identify the modes of a simple series
RLC circuit. By using sample measurements of the capacitor
voltage and the inductor current, modes of the RLC circuit can
be identified. Further, distortions are injected to the voltage
and current measurements in order that the DMD capability
is examined in case the measurements contain noises. In the
second case study, PMU power measurements of unknown
system are tested on DMD. In these two case studies, the DMD
is compared with ERA. Code of ERA has been developed by
the USF SPS group [17]. Example code of ERA can also



be found in [18]. The third case study of this paper, voltage
measurements that contain undesired components are built to
resemble the real-world events. After applying the DMD to the
given measurements, it is found able to accurately identify the
model and to decompose all the components.

This paper is organized as follows. Section II provides
the dynamic mode decomposition background, along with its
algorithm details. The DMD in power system implementations
are presented in Section III. Section IV concludes the paper.

II. DYNAMIC MODE DECOMPOSITION
This section firstly presents the DMD’s general theory, then
the DMD’s algorithm details.
A. The DMD General Concept
The DMD takes the collected measurements as an input
dx
dt
where x is the system state vector, x € R", at time ¢. f(-)
is the dynamical continuous-time function, while p represents

the system parameters. Since it is practical to have discrete-
time measurements, the discrete-time dynamics is considered

= f(x, t; 1) (1

Xpy1 = F (x) )

where F(-) is the dynamical discrete-time function. The
discrete-state vector x;, = x(kAt) for k =1, 2, ..., m. At
is the time-sample period, and m is the total number of
measurements. If the system is a linear system, (2) can be
represented by linear relationship using the dynamics matrix,
A e R™*™:

Xp+1 = Axg. 3)

The time-domain expression of x(¢) can be found if the
eigenvalues of A and its eigenvector matrix are known

x(t) = Z ¢y, exp (wit) by, = P exp(Qt)b 4)
k=1

where €2 is a diagonal matrix that contains the continuous-
eigenvalues, wy, ® is the eigenvector matrix, and b is the
coordinates of x(0) in the eigenvetor basis [9].

The following section presents the DMD algorithm case
studies. The DMD framework has the ability to approximate
the dynamical system from the system measurement data. The
measurements are set in two matrices, one of them has a time
shift, in order that the DMD is enabled to approximate the
dynamics matrix, A. The measurements matrices:

(5a)

(5b)

where X1, X2 € nx (m—1). This is the standard form of
setting the system measurements, which is known as Krylov
subspaces. In case of single measurement, the measurement
data must be set in a shift-stacking form so that the DMD
would be capable of finding the conjugate pair eigenvalues,
rather than a single real value [9]. The augmented data matrix
form involves both shift-stacking and time-delay, as follows

T €2 Tm—s
Z2 zs3 Lm—s+1
Xaug,l = (63-)
Ts Ts41 Tm—1
T2 T3 Tm—s+1
T3 Ty Tm—s542
Xaug,2 = . (6b)
Ts+1 Ls+42 Lm

here, Xaug,1, Xaug,2 € § X (m —s). s represents the time
shift, which should be sufficiently large. The data of the case
studies of this paper are built in the augmented form as in (6).
Although the notation would appear as in (5), the following
DMD steps are compatible for both (5) and (6).

Relying on the linear approximation (3) is described in
terms of the data measurement matrices, as

Xg ~ AX;. )

The best-fit dynamics matrix, A, is given by

A = XX, 8)

where T denotes the Moore-Penrose pseudoinverse. The system
dynamic behavior is model in the dynamics matrix A from
the given measurement data. The DMD algorithm details,
which show mode decomposition, system rank, and signal
reconstruction, are in the following subsection.

B. The DMD Algorithm

For large-scale systems, evaluating the dynamics matrix, A,
could be not only computationally expensive, but intractable.
The DMD avoids this complication by using Singular Value
Decomposition (SVD). More details and insights on the DMD
algorithm can be found in [9]. In this subsection, the algorithm
procedure of DMD is briefly described. First, SVD and rank
reduction is implemented on Xj:

X, ~ USV*, 9)

where U € C™"*" 3 € C"™", and V € C™*", and x refers to
the conjugate transpose. U and V are unitary matrices, and r
is the rank of the SVD approximation. Rank-reduction leads to
two advantages: lowering the computation cost and eliminating
the noises. In terms of SVD components, (8) becomes

A =X, VvX~lUu*. (10)



The full matrix A is projected onto the POD modes in order
to reduce its rank

A =U"AU = U*X,VE™! (11)

A is the reduced-rank dynamics matrix. The lower-rank
dynamical model is defined
Xpy1 = ARy (12)
The full-rank state can be achievgd by xi = Uxg. The
eigendecomposition is computed on A so that its eigenvalues
and eigenvectors are used to construct the DMD modes and
the solution signal.

AW = WA (13)

where W is eigenvector matrix, and A is the eigenvalue
diagonal matrix. The eigenvalue corresponds to the discrete-
time model. It is converted to the continuous-time model by
wp = In ()\k) /At.

The DMD exact modes are defined as following

® =X, VX~ 'W. (14)

The initial values of the DMD modes are the components of
b vector. It depends on the initial measurement column vector.
The mode initializations

b=&x;. 15)

The signal is reconstructed, thereby the current and the
future system continuous-state may be evaluated.

III. THE DMD APPLICATIONS IN POWER SYSTEMS
A. RLC Circuit

1) RLC Base-Case Measurements: In this case study, the
DMD is implemented on a series RLC circuit that is shown
in Fig. 1. The circuit parameters: V=1 volt, At= 0.001 s, R=
1 2, L=0.01 H, and C= 0.001 p. The dynamics matrix, A,
with inductor current 77, and the capacitor voltage vo as state
variables, is defined as follows.

(1 7]

Since the RLC circuit is a second order system, it has
two eigenvalues, A; o, that are —50.00 + j312.25. A step
change is given in the source voltage and the dynamic system
is simulated via MATLAB function 1sim [19]. The RLC
solution for 0.1 s, taking into account the sampling rate of
0.001 s, consists of 100 signal points. The capacitor voltage
and the inductor current measurement samples are used as
DMD input. Only the first 20 points of the solution are
employed. The measurement time shift, s, is chosen to be
10. The size of both Xaug1 and Xayug,2 is (20 x 10). It
should be noted that the rows of the data matrices are 20,
twice s, bearing in mind that the DMD input is comprised

—100 —100
1000 0

Fig. 1. Series RLC circuit.
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Fig. 2. RLC case study singular values.

of two signals. Even though X,ug 1 rank is 10, the rank-
reduction is primarily based on the effective singular values,
from the diagonal matrix 3. This case has three non-zero
effective singular values that have most the data information.
The rest of the ineffective singular value can be disregarded.
The normalized singular values are plotted in Fig. 2. Therefore,
the DMD rank, r, is 3. Consequently, the rank-reduction of this
case helps to circumvent 70 % of unnecessary computation.

The DMD solution is compared with the ERA method
as well as the original model. The reconstructed signals are
shown in Fig. 3, whereas the eigenvalues are plotted in Fig.
4. It can be seen that both methods exactly match the original
system.

2) RLC Measurements with 10% Noises: Since the mea-
surements of the real world inherently contain noises, 10%
random noises are added to the measurement signals. The
purpose of this case study is to inspect both DMD and ERA
methods with noises. In this case, the system rank is chosen as
3 based on the effective singular values. The DMD and ERA
model identification solutions are shown in Fig. 5. Because
the model eigenvalues with 10% noises are not known, we
compare the DMD and ERA eigenvalues with each other.
They are found in Fig. 6. It can be seen that while the ERA
eigenvalues slightly change, the DMD eigenvalues stand still
and match the original model.

B. PMU Measurements

The DMD and ERA algorithms are implemented on PMU
data of power measurements during an oscillatory event, taken
from [20]. The data are shown in Fig. 8. The data-set records
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Fig. 3. Base-case model along with DMD and ERA model identifications.
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Fig. 4. Base-case model, DMD, and ERA eigenvalues.

15 s, with sampling rate of 0.05 s, after the event occurrence
in the grid. The measured signal points are 301, and they are
plugged in the DMD. s, the time shift, is selected to be 150,
so the size of Xaug,1 and Xgayug 2 is (150 x 151). Due to lack
of information of the measured system, the system order can
be estimated by considering the most effective singular values.
The normalized singular values for this case are drawn in Fig.
7. Since the measurement contains noises, and our goal is to
express the system without noises, the DMD rank is chosen
to be the number of the most dominant singular values, which
is 5. The DMD rank can be higher, but this adds ripples and
meaningless eigenvalues to the identified model. Furthermore,
if rank-reduction is not performed, all the singular values are
included, the DMD fails to identify the model. The original
measurements along with the DMD and the ERA identification
are shown in Fig. 8. The DMD and ERA eigenvalues are
found in Fig. 9. The identified eigenvalues of both methods
are comparable.
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Fig. 5. The 10% noisy measurements along with DMD and ERA model
identification.
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Fig. 6. The DMD and ERA eigenvalues of 10% noisy measurements.

C. Abnormal Operation Analysis

The distribution-level system typically has unbalanced and
harmonic components. Moreover, faults and sudden distur-
bances add tremendous distortions to the network. Since these
undesired electrical components greatly harm both the grid
and the consumers’ devices, a detailed analysis must be
performed to track the disturbance issues. As an example,
if the voltage has a second-order harmonic and a fifth-order
harmonic components, the phase ”a” voltage is represented as
follows.

Vsa(t) = f/\; cos (wot) + ]{72‘7; cos (2wpt) + ksf/\; cos (bwot)

where ‘A/s is the voltage peak magnitude. The second-order and
fifth-order harmonic components are ko and ks, respectively.
t represents time, whereas the system radian frequency is wg.
The DMD algorithm is applied on the given data as if we
do not know the original system. This reverse engineering
technique demonstrates the DMD ingenuity.

The values of this example are V; = 1, ks = 0.1, k5 =
0.25, and wy = 27w60. The voltage data and also the DMD
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Fig. 8. The PMU measurements together with the DMD and ERA model
identification.

identification are drawn Fig. 10, which appear distorted.

The voltage data-set duration is 0.1 s with sampling rate of
0.001 s. So, the input signal constructed of 101 samples. s
is selected to be 50, that is, the size of Xaug 1 and Xayug 2
is (50 x 51). The singular values of this case are shown in
Fig. 11. The effective singular values are 6, as expected since
each cosine has two eigenvalues. Thus, the DMD rank is 6.
DMD builds the system of which its eigenvalues are plotted
Fig. 12. The DMD gives the ability to decompose the given
signal, the modes are found in Fig. 13. Mode 1, mode 2, and
mode 3 are associated with fundamental, fifth-harmonic, and
2nd harmonic components, respectively. The DMD arranges
the signal modes in dominance order. Each mode’s coefficient
is also identified by b. The coefficients against the fundamental
component’s coefficient are shown in Fig. 14. The results
exactly match the given coefficients.

From this analysis, operational engineers have a closer look
to the measured signal from which they can easily know all the
system details and fix it. For instance, the given case study is
found to contain second and fifth-order harmonic components.
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Fig. 9. The DMD and ERA eigenvalues of the PMU measurements.
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IV. CONCLUSION

The dynamic mode decomposition algorithm has been found
very useful in many engineering areas. The authors of this pa-
per motivate the use of the DMD in power system applications.
Besides of the DMD high accuracy of identifying a model, it
has the capability to decompose the system dynamic modes.
The first case study shows the DMD ability to identify the
RLC circuit modes from a few measurement samples. DMD is
found to be as good as ERA. Then, we intentionally add noises
to the RLC measurements to examine both methods, and it is
noticed that the DMD is more robust because its eigenvalues
remain unchanged as in the base case. In the second case
study, the DMD is applied on PMU power measurement data
of an unknown system. The solution is found comparable to
the ERA method. In the third case study, the data-set represents
voltage measurement that is distorted due to disturbance,
and the DMD is capable to identify all the measurement
component details.
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