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Abstract—This paper demonstrates the use of dual variables
associated with power equality constraints in Volt/VAR optimiza-
tion models as a loss locational sensitivity. The dual variables
can be employed for optimal placement of VAR compensa-
tion equipment and distributed energy resources (DERs). In
addition, it can be utilized to price DERs generated power.
The concept is illustrated thoroughly and tested on a modified
IEEE-69 bus distribution system and results are presented and
discussed. A comprehensive nonlinear programming formulation
of distribution system Volt/VAR optimization model is illustrated.
Furthermore, a penalty-based approach that handle discrete
or integer variables and solve MINLP as continuous NLP is
reviewed and validated. The presented formulation is able to
directly allocate the dual variables values.

Index Terms—Loss factor, locational Sensitivity, locational
marginal price, LMP, Distribution Systems, DERs, VVO, MINLP,
VOLT/VAR optimization.

I. INTRODUCTION

Loss locational sensitivity (i.e. loss factor) is an essential
part of power system analysis as it evaluates the reaction
of power loss at a certain location of the system to power
injection or withdrawal. With the recent advancement of power
computational tools and integration of distributed energy
resources (DERs), inspecting loss sensitivity in distribution
network has gained more attention and become a subject of
interest to elect optimal placement of volt/VAR equipment or
to optimize active or reactive power levels. [1]–[3].

VAR compensation equipment such as shunt capacitor
banks, static VAR compensators (SVCs) and DER inverters
with reactive power support capabilities improves the system
voltage profile, helps to diminish voltage fluctuation and
reduces power losses. This yields further power reliability,
increases loading capacity and lengthens lifespan of equip-
ment. Abundant methods, such as metaheuristic-algorithms
and evolutionary-based strategies are employed to specify
optimal sizing and allocation to integrate these equipment [4],
[5]. The presented concept offers a valid tool to validate those
solutions.

Furthermore, as an alternative of setting a flat rate for DERs
power supply which might be unreasonable in locations with
high demand and low supply, the results of the highlighted
concept can be utilized to assign variety of percentage rates
based on the location of participants. This will encourage
DERs holders in areas with elevated power demand and losses

to participate and supply local demands which will improve
the system power equality, lower losses and limit congestion.

In optimal power flow and wholesale energy market op-
timization models, the objective function essentially aims to
minimize power generation costs in addition to other auxiliary
functions such as conservation voltage reduction and reducing
equipment switching costs. One of the essential constraints
in these optimization models is power balance equality. In
these models, the objective function revolves around costs
and prices. Hence, the dual variables associating power bal-
ance equality constraints (λi) are customarily referred to as
locational marginal prices (LMPs). Those variables indicate
the cost of supplying an additional unit to meet demand
at a particular location. However, in Volt/VAR optimization
models, the objective function mainly aims to minimize power
losses and maintains a proper voltage profile across distri-
bution branches. In this case, the dual variables associated
with the power balance equation constraints indicate to the
locational sensitivity of loss toward active or reactive load
alteration. This paper highlights the potential applications of
analyzing these dual variables conducted values and utilizing
them as loss factors that measure the sensitivity of loss toward
power level variations.

Various literatures are proposing different Volt/Var Opti-
mization (VVO) methodologies and loss sensitivity calcula-
tion in distribution network [6], [7]. Cascaded optimization
approaches are employed to first allocate network equipment
optimal settings and then perform a market clearance problem
to calculate the dual variable values. The presented approach
in this paper can compute network optimal settings including
integer variables in conjunction with the dual variables values
simultaneously.

In this paper, a mixed-integer non-linear optimization prob-
lem (MINLOP) is adopted to model modern radial distribution
systems. The model incorporates on-load tap-changing distri-
bution transformers, step voltage regulators (SVRs), capacitor
banks (CBs) and distributed energy resources (DERs). A
penalty-based nonlinear approach which can tackle integer
variables is employed to rapidly solve the MINLOP model
and allocate optimal results with fairly high precision. This
approach converts integer variables into continuous ones and
implement a penalty function to the objective function to
force those variables to take integer values [8], [9]. As a
contribution to this approach, discrete variables were expressed978-1-7281-0407-2/19/$31.00 ©2019 IEEE



Fig. 1: A unified π-model for distribution branches.

in terms of integer variables and implemented directly into
the optimization model producing more divine and logical
outcomes.

II. DISTRIBUTION SYSTEM VOLT/VAR OPTIMIZATION

A. System Modeling

1) Redial Distribution Branches, OLTCs and VRs: A uni-
fied π-model as shown in Fig. 1 is adopted to model distribu-
tion branches with constant impedance, such as overhead lines
and underground cables, as well as branches with controllable
impedance for lines with voltage regulators (VRs) and on-load
tap-changing transformers (OLTCs).

Fig. 1 depicts a branch ` connecting two nodes where i is
the sending node and j is the receiving node. The parameter
ysh denotes the total charging susceptance at node i where
ysh = j bc. The variable τk is a discrete variable denotes
OLTC or voltage regulator (VR) tap regulation-ratio where k
represents the equipment number. It can be expressed as,

τk = τmin
k + Utk × δtk, Utk ∈ Z (1)

where τmin
k is the lower limit of τk while Utk is an integer

variable denotes transformer k OLTC’s tap position number
while δtk represents the OLTC incremental/decremental tap
step-size.

As the tap-ratio τk magnitude varies, the system admittance
matrix changes accordingly. Hence, the bus admittance ma-
trix of this branch, which relates current injections to nodal
voltages, can be formulated as [10],

Ybus =

[
(y` + j bc2 ) 1

τ2
k

−y` 1
τk

−y` 1
τk
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]
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Yii
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(2)

When a branch is not equipped with an OLTC or VR, the
variable τk should be set to 1.

For a branch ` connecting two nodes i and j, the apparent,
active and reactive power flow can be computed as,

Sij(t) = |Vi|2Y ∗ii
1

τ2
k

+ |Vi||Vj |Y ∗ij
1

τk
(cos θij + j sin θij) (3)
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(5)

where Y ∗ij = Gij − jBij is the i-th row and j-th column in
the system total admittance matrix.

Active power losses across distribution branch ` are calcu-
lated as,

P lossij (t) = Re(Sij + Sji)

= −Gij
[
|Vi|2 1

τ2
`

+ |Vj |2 − 2|Vi||Vj | 1
τ`

cos θij
]

(6)

2) Shunt Capacitor Banks: The quantity of reactive power
injection relies on the node’s voltage magnitude and it can be
computed as:

Qshk = bshk |Vk|2 (7)

where bshk is a discrete variable quantifies the shunt suscep-
tance at node k in pu. It can be expressed as,

bshk = bmin
k + Uck × δck, Uck ∈ Z (8)

where bmin
k is the lower limit of bshk and Uck is an integer vari-

able denotes the capacitor bank k tap position number. The pa-
rameter δck denotes capacitor bank k incremental/decremental
tap step-size.

The amount of VARs injection can be adjusted by varying
the tap position variable Uck . If node k is not equipped with
a capacitor bank then Qshk should be set to zero.

3) Photovoltaic Systems (PV): A PV-system with VAR
supply capability is chosen here to represent DERs due to
its widespread use. When a distributed generation unit such as
PV-system is interfaced with a voltage source converter (VSC),
it can provides a mechanism to control nodal voltage by
injection or absorbing reactive power along with active power.
Nevertheless, reactive power support depends on the inverter
power capacity. The system priority is to dispatch maximum
active power and then depending on the residual capacity
of the inverter; reactive power is dispatched (generated or
absorbed).

QPVi, g ≤
√

(SPVrated)2 − (PPVi, g )2 (9)

where SPVrated is the inverter apparent power (VA), PPVi, g and
QPVi, g are the generated active and reactive power respectively.
Obviously, at maximum active power generation, the inverter
will not be able to provide any reactive power. Hence, it
is important to oversize the inverter. A 10% increase in the
inverter capacity will rise reactive power support capability at
maximum active power generation from 0% to about 46% of
its full potential [11].

B. VVO Model Formulation

Typical VVO model for distribution systems with cen-
tralized control unit is a mixed-integer nonlinear problem
(MINLP) that aims to minimize active power loss across dis-
tribution branches at all time segments while satisfying power
operational and security constraints. The decision variables
are: on load tap-changer and voltage regulator tap position Utk ,
shunt capacitor banks tap position Uck , PV-system inverters
VAR supply QPVi, g and nodal voltage magnitude and angle
(|Vi|,θi). The model is generally formulated as:



min
x

T∑
t=1

∑
`

P loss` (t) · [Tt+1 − Tt] (10a)

s.t. 4Pi(t) = 0 ∀i ∈ N ∀t ∈ T : λPi (t) (10b)

4Qi(t) = 0 ∀i ∈ N ∀t ∈ T : λQi (t) (10c)
S`(t) ≤ Smax` ∀` ∈ L ∀t ∈ T : =`(t) (10d)

Vi ≤ Vi(t) ≤ Vi ∀i ∈ N ∀t ∈ T : µmini (t), µmaxi (t)
(10e)

QPV
i, g (t) ≤ QPV

i,max(t)∀i ∈ NG ∀t ∈ T : ψmaxi,pv (t) (10f)

QPV
i, g (t) ≥ QPV

i,min(t)∀i ∈ NG ∀t ∈ T : ψmini,pv (t) (10g)

Utk(t) ∈ Dtk ∀k ∈ N T ∀t ∈ T (10h)

Uck(t) ∈ Dck ∀k ∈ NC ∀t ∈ T (10i)

where P loss` (t) symbolize active power losses on a branch
` at time t. 4Pi(t) and 4Qi(t) are nodal active and reactive
power equality constraints at time t which is computed as,

4Pi(t) = Pgi (t) + PPVi, g − Pdi (t)−
∑
j∈Ωi
j 6=i
Pij(t) (11)

4Qi(t) = Qg
i (t) + QPV

i,g + Qsh
i −Qd

i (t)−
∑
j∈Ωi
j 6=i

Qij(t)

(12)

where Pgi ,Qgi and Pdi (t), Qd
i (t) are nodal generated and

demand active and reactive power respectively.
∑
j∈Ωi

Pij(t)
and

∑
j∈Ωi

Qij(t) are the total power flow from node i where
Ωi is a set of all nodes connected to node i. PPVi, g and
QPV
i, g represent PV-system generated active and reactive power

respectively. The available upper and lower limits of reactive
power support at time t is determined as,

QPV
i, max(t) = −QPV

i, min(t) =
√

(SPVrated)2 − (PPVi, g (t))2 (13)

Other nomenclatures:
T is a set of time segments being optimized.
L is a set of all the distribution branches.
N is a set of all nodes excluding a predefined slack

node.
N T a set of voltage regulators and transformers with

OLTC.
NC a set of all nodes with capacitor banks.
Qshi is the shunt capacitance injected at node i by a

capacitor bank (if the node has one; otherwise it
equals zero).

Vi(t) is the voltage phasor of each node (|Vi|∠θi), while
Vi and Vi are the minimum and maximum permitted
operating limits of each phasor respectively.

S`(t) is the apparent power flow on branch ` while Smax`

is the branch maximum thermal limit.
Utk(t) is an integer setting value of the k-th transformer’s

OLTC at time t and Dtk is a set of the tap position
numbers (it usually has 32 regulation step with a
neutral step in the middle).

Uck(t) is an integer setting value of the k-th capacitor bank
at time t and Dck is a set of the tap position numbers.

λPi , λ
Q
i , =`, µmini , µmaxi , ψmaxi,pv , ψ

min
i,pv are dual variables as-

sociating each constraint.

C. Model Implementation Technique (MINLP into NLP)

The aforementioned model is a mixed-integer, non-linear
and non-convex optimization problem. In general there are
four techniques that are commonly used to solve such a
problem which are: branch and bound, branch and cut, bender
decomposition and outer approximation. However, as the num-
ber of integer variables increase these methods could become
computationally expensive and less robust [12], [13].

In this paper, a penalty based method which was introduced
in [8], [9] and implemented in [13], [14] is adopted to solve
the VVO model. It convert MINLP into a continues nonlinear
problem which then can be solved directly using nonlinear
local optimization solvers such as IPOPT or FMINCON.

Utilizing the formulated model in (10), the integer variables
Utk and Uck are considered as bounded continuous variables
while an “integerization” sinusoidal penalty function is added
to the primary objective function to drive the optimization
solver to achieve a feasible value for each variable. The model
is updated as,

min
x

T∑
t=1

∑
`

P loss
` (t) · [Tt+1 − Tt] + γ Φ(Utk , Uck) (14a)

s.t. (10b)− (10g)

Umin
tk
≤ Utk(t) ≤ Umax

tk
∀k ∈ N T ∀t ∈ T (14b)

Umin
ck
≤ Uck(t) ≤ Umax

ck
∀k ∈ NC ∀t ∈ T (14c)

with,
Φ(Utk , Uck) =

NT∑
k=1

[
sin(Utk · π)

]2
+

NC∑
k=1

[
sin(Uck · π)

]2
where γ is a scaling parameter to control the penalty

function impact weight. When the tap variables Utk and Uck
obtain integer values, the penalty function would equal zero.

A loop is created around the optimization problem to push
the solver into convergence by obtaining values with a certain
small percentage of deviation from the feasible values of each
integer variable. By gradually increasing the value of γ, the
problem should converge into a feasible solution. However,
because of the noneconvexity nature of the problem, optimal
solution is not guarantee to converge into a global one [14].

III. SENSITIVITY OF LOSS TOWARD LOADING CONDITION

The sensitivity (i.e. rate of change) of power loss toward
load changes can be found using Karush-Kuhn-Tucker method
(KKT). From the adopted VVO model in (10) the Lagrange
function can be formulated as follows:
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+ ψmini,pv

(
QPV
i,min −QPV

i, g

)
(15)

Where the inequality constraints dual variables =` , µmini ,
µmaxi , ψmaxi,pv and ψmini,pv are all greater than or equal 0.

Taking partial derivative of the Lagrange function with
respect to the nodal power demand yield nodal active and
reactive locational sensitivity of loss toward nodal loading
condition:

∂L

∂P di
= λPi (16)

∂L

∂Qdi
= λQi (17)

Power losses across distribution lines are the result of the
flowing current interacting with the line impedance producing
heat, voltage drop and decreased power transfer capacity on
that line. As the current magnitude rise, power losses increase
consequently (I2 × R). Thus, the dual variables (λPi and
λQi ) provide efficacious indications to predict nodal response
toward load changes or active/reactive power compensation.

This present a way to price DER power purchase agreements
based on the location and area loading condition. Owners in
condensed areas with high value of sensitivity of loss toward
load increase (λPi or λQi ) ought to be offered higher financial
incentives to encourage them to participate in supplying local
demand and reduce power transmission losses.

IV. CASE STUDIES AND RESULTS INTERPRETATION

The mixed-integer nonlinear VVO model formulated in (10)
is solved through the approach demonstrated in section (II-C)
using local nonlinear optimization solver FMINCON which
is part of MATLAB optimization toolbox. A modified IEEE-
69 distribution system shown in Fig. 2 with a base voltage
of 12.6kV and 10MVA base apparent power is adopted to
simulate a typical mid-size system. Network branch data are
obtained from [15], [16]. A distribution transformer with an
OLTC is considered between nodes 1 and 2 with 32 voltage
regulation steps (±10% of input voltage).

Fig. 2: Modified IEEE-69 Node Distribution System

Nodes are assumed to have various power demand charts
during a 24 hour period with constant power factors. Charts
are showing in Fig. 3 while table I lists each node’s specific
chart.

Nodal voltage maximum and minimum limits are 1.05 and
0.95 respectively. Moreover, all branches are assumed to have

Fig. 3: Nodal Power Demand Charts
Table I. List of Nodal Loading Charts

Node Number
Chart 1 2 9 28 29 33 34 36 40 41 45 46 57-60 62-64 66 68 69
Chart 2 5 31 42-44 47 48 50 51 53-56 67
Chart 3 6-8 10-13 15-17 20 21 23 26 27
Chart 4 30 37-39 61
Chart 5 22 25

a thermal limit of 10 MVA. Lastly, the OLTC tap discrete vari-
able τ1 parameters are: τmin

1 = 0.9, Ut1 = {0, 1, 2, . . . , 32}
and δt1 = 5/8%.

Two case studies are conducted to demonstrate the concept
thoroughly. Computation results were validated using MAT-
POWER package [17] to ensure strict accuracy.

A. Case One: A Broad View

1) System in Original Status: Fig. 4 depicts the system
original active and reactive locational sensitivity of loss toward
load changes during a 24 hour period. Elevated λPi and λQi
ratios reflect rising loading levels in a direct correlation. Nodal
voltage profiles during the 24-hour period are shown in Fig. 5.
Although all nodes are within permissible limits, some nodes
are at risk of voltage drop with additional load.

A closer look at an average loading level at time segment
14 is presented in Fig. 6. It depicts a parallel comparison
of locational λPi and λQi , nodal voltage profile, active and
reactive power flow and power losses across branches. Power
loss depends upon the line impedance and the flowing current
magnitudes. Thus, some branches have higher loss ratio than
other although they has less λPi and λQi values.

Since the distribution feeder from node 1 to 27 is the main
line where remaining nodes branch out of it. Loading on lateral
lines affect the node of branching on the main line. Thus, to

Fig. 4: Loss Locational Sensitivity toward Loading Condition



Fig. 5: Nodal Voltage Profile

Fig. 6: Comprehensive Analysis of time segment 14

provide a clear charts and reduce the number of figures, it is
adequate to present impact upon the main line exclusively.

2) Implementing Active and Reactive Power Compensation:
An elaborated examination of λPi and λQi charts in Fig. 6
indicate to a necessity at various parts of the network for active
and reactive power compensation. Nodes with elevated λPi
and λQi ratios require power compensation to partially supply
local demand and reduce losses. Therefore, two scenarios are
performed to show the effect of power compensation on the
system and examine nodal loss sensitivity variation toward
loading condition.

Scenario 1: in light of Fig. 6, three capacitor banks with a
total capacity of 900 kVARs per bank are installed at nodes
8, 13 and 45 for a capacitive power compensation. Each
bank contains three internal capacitors with a capacity of
300kVARs each. The parameters of all capacitor banks tap
discrete variable bshk are: bmin

k = 0, Uck = {0, 1, 2, 3} and
δck = 3%.

Scenario 2: in addition to the connected capacitor banks,
several nodes are assumed to have PV-systems with different
capacity as shown in table II where PPV

rated refer to the PV-
panels rated maximum capacity while SPV

rated represent the
inverter maximum operating limit. Values are assumed for
experimental aspects and not based on industrial standards.
All PV-systems are allowed to supply and consume reactive
power based on the inverter capacity.

Fig. 7: Case Study 1: Three Different Scenarios.

Fig. 7 reveals a system-wide glance showing a comparison
of the original status with the proposed two scenarios. It can
be observed that in the original status (blue line) λPi and λQi
values are raising after node 5 and continue to rise duo to
the loading conditions and high line impedance. The reactive-
locational sensitivity of loss toward load λQi is utilized to
identify optimal placement of capacitor banks at nodes 8,
13 and 45 which appeared clearly in the first compensation
scenario (red line). Implementing these capacitors reduced
line loss and improved voltage profile. Furthermore, active-
locational sensitivity of loss toward load λPi is utilized to iden-
tify optimal placement for active power compensation which
yield a superior voltage profile and reduced loss significantly
in the second scenario (yellow line).

Note that in the second scenario, nodes 13 and 14 has a
negative λQi which indicate to an overcompensation situation
due to excessive VAR supply by DER inverters. Such a power
security issue motivates distribution network operators (DNOs)
and power legislators to impose various standards such as
(IEEE Std. 1547-2003) to oblige DER owners to operate with
a unity or a specific power factor to prevent uncontrolled or
undesired VAR supply. Furthermore, loading levels during the
three performed scenarios are fixed. However, in case inductive
loads at nodes 13 and 14 increase during the second scenario,
power losses will exceptionally be reduced.

The optimization optimal results during the three performed
cases are: in the original status; τ1 = 0.9499 (TAP#9), in
scenario-1; τ1 = 0.9625 (TAP#11), bsh1 = 0.0602, bsh2 =
0.0603, bsh3 = 0.0602, and finally in scenario-2; τ1 =
0.9623 (TAP#11), bsh1 = 0.0603, bsh2 = 0.0600, bsh3 =
0.0603 while PV-systems optimal settings are listed in Fig. 8.



Table II. Distributed PV-Systems Data

Node # PPV
rated SPV

rated Node # PPV
rated SPV

rated
10 15 18 30 15 18
12 45 54 35 250 300
18 15 60 54 45 54
20 15 18 62 15 18
26 15 18 67 15 18
27 250 300 69 45 54

Fig. 8: Optimal DER Power Dispatch

B. Case Two: Close Examination

A second case study is carried out to inspect the influence
of a particular node load change on surrounding nodes levels
of λPi and λQi and power factors during time segment 14.

A particular part of the system from node 36 to 39 is
monitored closely while loading level on node 38 varies in
three different scenarios. Fig. 9 depicts a comparison of the
three performed tests.

The first scenario (blue line) represent the original status of
the system at time segment 14. In the second scenario, node 38
active power demand is increased 300%. For a third scenario,
its reactive power demand is increased 300%. It can be
observed that increasing active power demand at node 38 in the
second scenario (red line) raised λPi value which illustrate that
augmenting more active load will produce higher power losses.
It slightingly reduced λQi value because the ratio of active to
reactive power demand is increased which is shown clearly as
a power factor improvement. However, raising active power
demand increased branch losses. As for the third scenario
(yellow line), increasing reactive power demand at node 38
increased λQi value which state that augmenting additional
inductive load will raise power loss. As expected, it decreased
nodal power factors due to the increase of inductive load.

V. CONCLUSION

This paper review the potential utilization of the dual vari-
ables associating power equality constraints in VVO models as
tools to predict loss sensitivity toward load changes. Results
can be used to determine optimal placement of active and
reactive power compensation equipment. In addition, it can be
utilized to price DER generated power based upon location.
A detailed formulation of a mixed-integer nonlinear VVO
models is illustrated and a solving technique is presented and
validated.
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