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Abstract

The main challenge in implementing alternating direction method of multipliers (ADMM) for nonconvex
alternating current optimal power flow (AC OPF) is that ADMM method does not guarantee convergence
for nonconvex problems. Using auxiliary variables for information exchange among subareas play a critical
role in convergence improvement. This paper proposes a new auxiliary variable-based ADMM for nonconvex
AC OPF. The proposed approach can improve convergence with less iterations compared with the existing
method. The proposed ADMM algorithm is tested for power grids with sizes ranges from 30 buses to 1354
buses. Subareas are generated using spectral clustering based on a graph Laplacian representing network
connectivity. The numerical results are compared with those based on the existing auxiliary variables-based
method in the literature. Case studies demonstrate improvement in convergence due to the new auxiliary
variables.
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1. Introduction

The alternating current optimal power flow (AC OPF) problem is a nonconvex optimization problem.
The decision variables include generators’ real and reactive power outputs and voltage magnitude and angle
at each bus. The objective function is usually the generation cost and the constraints include equality
constraints that describe power injection relationship with voltage phasors and inequality constraints that
describe generator limits, voltage limits, and line flow limits.

A grid usually has multiple control agents. For the sake of security and privacy, limited information
exchange is desired among agents. Thus, distributed OPF is desired [1]. Distributed optimization techniques,
e.g., dual decomposition [2], auxiliary problem principal [3, 4], primal-dual decomposition [5], ADMM [6, 7],
have been proposed for AC OPF solving. Among them, ADMM gains more and more popularity due to its
guaranteed convergence for convex problems [8]. For nonconvex optimization problems, ADMM does not
offer guaranteed convergence.

To have a guaranteed convergence, AC OPF problem may be first relaxed to a convex optimization
problem. Second-order cone program (SOCP) relaxation is one such methods. SOCP relaxation has been
implemented in distribution network AC OPF [9]. In [10, 11, 12, 13], ADMM is used to solve SOCP
relaxation of AC OPF for radial networks. Semi-definite programming (SDP) relaxation is a tighter relax-
ation compared to SOCP relaxation. SDP relaxation of AC OPF has been studied in the literature, e.g.,
[14, 15, 16, 17]. In [18, 6, 19, 20], ADMM is implemented to solve SDP relaxation of AC OPF.

Instead of using relaxation, research efforts [7, 21, 22, 23] are devoted to implement ADMM directly to the
nonconvex AC OPF problems. The main challenge is related to convergence since ADMM does not guarantee
convergence for nonconvex problems. In addition, for large-scale power grids, manual partitioning of a grid
into multiple subareas is a challenge. Hence, automatic partition has been investigated for distributed AC
OPF. Power grids can be partitioned based on generator location [22], tie-lines [24], electrical distance [25],
or spectral clustering [26].

In [7], ADMM is implemented for nonconvex AC OPF solving. Shared rectangular voltage coordinates
are exchanged among subproblems. In [21], we have solved the IEEE 14-bus system AC OPF problem using
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ADMM algorithm. Reference [22] improves ADMM convergence speed by varying penalty parameter and
introducing auxiliary variables for regional information exchange. Network partitioning in [22] depends on
generators location. In [23], the authors adopt the auxiliary variables proposed in [22] and an intelligent
partitioning method based on spectral clusering [27]. The auxiliary variables (z) in [22, 23] are constructed
to exchange tie-line voltage phasor differences and sums between connecting regions. This approach greatly
improves the convergence speed for ADMM of nonconvex AC OPF.

This paper deals with a centralized AC OPF problem and solves this classical problem in a distributed
fashion. We further improve the convergence of ADMM for nonconvex AC OPF by introducing a set of
new auxiliary variables for regional information exchange. Our proposal is based on a detailed examination
of tie-line power flow expressions between two areas. The proposed new auxiliary variables are similar as
the decision variables in SOCP relaxation of AC OPF where cij and sij are used to replace voltage phasors
[9]. We compared the ADMM convergence speed using the new auxiliary variables versus that using the
auxiliary variables in [23, 22] and see improvement for all cases we tested.

The rest of the paper is organized as follows. In Section II, ADMM for AC OPF problem is presented in
a nutshell with the IEEE 14-bus system being used as an example for illustration of the ADMM algorithm
and the information exchange structure. Section III first examines the auxiliary variables in the literature
and then proposed a set of new auxiliary variables. Section IV presents the automatic spectral partitioning
technique. Section V presents case studies and Section VI concludes this paper.

2. ADMM for AC OPF in a Nutshell

2.1. AC OPF

The AC OPF problem is considered in this paper, where the objective is to minimize the generation
cost subject to power flow equality constraints, generator limits, line flow limits and voltage limits. It is a
nonconvex optimization problem. The mathematic programming problem is presented in (1).

min
x

∑
i∈G

(fPi(Pgi) + fQi(Qgi)) (1a)

s.t. P g
i + jQg

i − P
d
i − jQd

i = Si(V, θ), i ∈ N (1b)

Smin
ij ≤ |Sij(V, θ)| ≤ Smax

ij , (i, j) ∈ L (1c)

P g
i + jQg

i =
∑
k∈Gi

(Pgk + jQgk), i ∈ N (1d)

Pmin
gi ≤ Pgi ≤ Pmax

gi , i ∈ G (1e)

Qmin
gi ≤ Qgi ≤ Qmax

gi , i ∈ G (1f)

V min
i ≤ Vi ≤ V max

i , i ∈ N (1g)

where G is the set of all generators, Gi is the subset of the generators that are connected to Bus i, N is
the set of all buses, L is the set of all branches. The decision variables include voltage magnitude V ∈ R|N |,
phase angle vector θ ∈ R|N |, generator’s active power and reactive power Pg ∈ R|G| and Qg ∈ R|G| where |.|
notates the cardinality of a set. The decision variable x is defined as: xT = [PT

g QT
g V T θT ]T .

(1a) presents the objective function as the summation of individual polynomial cost functions fPi(Pgi)
and fQi(Qgi). (1b) are the power flow equality constraints. P g

i and Qg
i are the total real and reactive power

generation at Bus i. P d
i and Qd

i are the active and reactive load demands at Bus i. (1c) are inequality
constraints related to line flow limits. The limits of the generators’ power and the network’s bus voltages
are listed in inequality (1e)-(1g).

The AC OPF is a nonconvex optimization problem due to the nonlinear equality constraints related to
complex power injections Si and the inequality constraints related to line flow Sij .
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2.2. ADMM Implementation on IEEE 14-Bus Network

Consensus ADMM has been be implemented in our prior paper [21]. In this subsection, a brief summary
of the consensus ADMM in [21] is presented. In consensus ADMM, the original problem will be casted into
multiple subproblems. Consensus ADMM has an information aggregation step. At every step, given the
information from the aggregator as well as the dual variables, each subproblem finds its decision variables (xk,
where k represents kth subproblem) and sends out exchanging information (notated as auxiliary variable) to
the aggregator. The aggregator then updates the consensus variable z based on all the information collected
from all subareas [8].

In this section, we will examine an example system and formulate ADMM implementation for AC OPF.
We then extend the formulation to a general system.

2.2.1. Subsystems Separation

In Fig. 1, the IEEE 14-bus system’s network topology is given. It has 5 generators and is partitioned
into 3 areas. Each area consists of internal buses, interfacing buses, boundary buses and the branches inside
this area as well as tie-lines connecting with neighbor areas.

The system will be decoupled by assuming a voltage source at the boundary bus. Fig. 2 shows a simple
system is decoupled into two areas. Area 1 and Area 2 have a tie-line between Bus i and Bus j.

Bus j is treated as a voltage source bus in Area 1. Bus i is treated as a voltage source in Area 2. For Area
1, the subproblem decides voltage phasors at Area 1’s internal buses, interfacing buses (Bus i) and boundary
buses (Bus j). For Area 2, the subproblem problem decides the voltage phosors at Area 2’s internal buses,
interfacing buses (Bus j) and boundary buses (Bus i). Both subproblems decides the two voltage phasors
at Bus i and Bus j. We notate a consensus area for Area 1 and Area 2 which includes buses i and j. At the
aggregation step, voltage phasors of the consensus area should be averaged based on the information from
both areas.

2.2.2. Information Exchange Structure

For IEEE 14-bus system, three subareas are identified and notated as: A1, A2 and A3. Three consensus
areas are notated as: A1

⋂
A2, A1

⋂
A3 and A2

⋂
A3. There is no any consensus area that is related to

all three subareas. A1 includes buses {1, 2, 3, 4, 5, 6, 7, 9} where Bus 6 also belongs to A3 (Line 5− 6 is the
tie-line and Buses 7 and 9 also belong to A2 (Lines 4 − 7 and 4 − 9 are tie-lines). We notate the buses in
each subarea as:

NA1
= {1, 2, 3, 4, 5, 6, 7, 9}

NA2
= {4, 7, 8, 9, 10, 11, 14}

NA3
= {5, 6, 9, 10, 11, 12, 13, 14}

NA1
⋂

A2
= {4, 7, 9}

NA1
⋂

A3
= {5, 6}

NA2
⋂

A3
= {10, 11, 14}

Instead of defining one aggregator, for this particular case, we define three aggregators since there are
three consensus areas. In the aggregation step, once two subareas’ decision variables have been updated,
the corresponding aggregator will update its variables. The information exchange structure among the three
subareas and three aggregators are presented in Fig. 3.

An aggregator collects information related to the consensus variables from two areas. It then updates
the consensus variables and sends out the updated consensus variables to the two related areas. Each area
then conducts a decision making process based on the inputs from those connected aggregators. The related
information is again sent to corresponding aggregators.

2.2.3. ADMM Procedure

Area 1’s subproblem will decide the voltage phasors for all buses in Area 1 (NA1
) and the generator

outputs for all generators in Area 1 (notated as GA1 = {1, 2, 3}). Generators 1, 2 and 3 are in Area 1. If
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there are generators connected to its boundary buses, e.g., Bus 6, these generators do not belong to Area
1 since the boundary bus is considered as a voltage source bus for the OPF subproblem for Area 1. The
decision variables of Area 1 are listed as follows.

x1 = [Pg1, Pg2, Pg3, Qg1, Qg2, Qg3, V1, . . . V7, V9, θ1, . . . θ7, θ9]T

The consensus variable vector between Area 1 and Area 2 is notated as z1,2 when referring to Area 1
and notated as z2,1 when referring to Area 2. Similarly, the consensus variable vector between Area 1 and
Area 3 is notated as z1,3 or z3,1.

z1,2 = z2,1 = [V4, V7, V9, θ4, θ7, θ9]T

z1,3 = z3,1 = [V5, V6, θ5, θ6]T

z1,2 and z1,3 will be aggregated into a vector z1 to notate all the consensus variables that Area 1 contains:

z1 =
[
zT1,2 zT1,3

]T
.

At Step (t+ 1), the ADMM procedure for one area is given as an example. Given the information from
Aggregator 1 (zt1,2) and Aggregator 2 (zt1,3) as well as the dual variable vector λt

1, the objective function
for Area 1 is as follows.

L1(x1; z
t
1, λ

t
1) =

∑
i∈GA1

(fP (Pgi) + fQ(Qgi))

+(λt
1)T (A1x1 − zt1) +

ρ

2
‖A1,2x1 − zt1,2‖2

+
ρ

2
‖A1,3x1 − zt1,3‖2

(2)

where A1,2 and A1,3 are permutation matrices that define the relationship between z1,2, z1,3 versus x1,

respectively (A1,2 ∈ R6×22 A1,3 ∈ R4×22) and A1 =

[
A1,2

A1,3

]
, and ρ is a positive constant and is termed as

penalty factor for ADMM.
Inequality and equality constraints are given as follows.

Pmin
gi ≤ Pgi ≤ Pmax

gi , i ∈ GA1

Qmin
gi ≤ Qgi ≤ Qmax

gi , i ∈ GA1

V min
i ≤ |Vi| ≤ V max

i , i ∈ NA1

P g
i − P

d
i =

∑
j

ViVj(Gij cos θij +Bij sin θij), i ∈ NA1

Qg
i −Q

d
i =

∑
j

ViVj(Gij sin θij −Bij cos θij), i ∈ NA1

(3)

where Gij and Bij are the real and imaginary components of the admittance matrix Y ’s element Yij and
θij = θi − θj . .

Area 1 will solve the above optimization problem and find xt+1
1 . Similarly, other areas also find their
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solutions: xt+1
2 and xt+1

3 . The update procedures in the three aggregators are as follows.

zt+1
1,2 =

1

2

(
A1,2x

t+1
1 +A2,1x

t+1
2

)
zt+1
1,3 =

1

2

(
A1,3x

t+1
1 +A3,1x

t+1
3

)
zt+1
1,3 =

1

2

(
A2,3x

t+1
2 +A3,2x

t+1
3

) (4)

Each area now receives the aggregated information from the aggregators. The dual variables for each
area will then be updated.

λt+1
1 = λt

1 + ρ(A1x
t+1
1 − zt+1

1 )

λt+1
2 = λt

2 + ρ(A2x
t+1
2 − zt+1

2 )

λt+1
3 = λt

3 + ρ(A3x
t+1
3 − zt+1

3 )

(5)

For this example, the auxiliary variable is at Area 1 is A1x1 while the consensus vectors are z1,2 and z1,3.

2.3. ADMM’s General Formulation for AC OPF

With the small-scale example examined, we now proceed to define the procedure of consensus ADMM
for a general AC OPF problem with K subareas and m aggregators. The set of the subareas is notated as
A = {A1, A2, ..., AK}. An aggregator collects information from two subareas and computes their average.

For Area k, the subproblem’s decision variable vector is defined as xk (xk ⊂ x). The subproblem
requires information from all aggregators that collect information from Area k. The consensus variable
vector between Ai and Aj is defined as zi,j . Hence the auxiliary variable vector of Area k should include
all information related to the consensus vectors. Let the set of the adjacent areas of Area k be defined as
adjk. Then zk,j (j ∈ adjk) is a consensus vector between Area k and its adjacent area j. Take the Area 1
in Figure 1 for example. Area 1 will not share the upper and lower bounds or the actual generation power
of generations 1-3 to other agencies. What Area 2 and Area 3 can know is the bus voltage phasors on bus
4 and 5.

zk =
⋃
zk,j , j ∈ adjk.

At Step (t+ 1), the subproblem solved at Area k is to minimize the augmented Lagrangian function of
(6) with the consensus vector ztk and dual variable vector λt

k given from the previous step.

min
xk∈Xk

Lk(xk; z
t
k, λ

t
k) (6)

where Xk is the feasible region defined by all the constraints related to Area k, and

Lk(xk; z
t
k, λ

t
k) =

∑
i∈GAk

(fP (Pgi) + fQ(Qgi))

+(λt
k)T (Akxk − ztk) +

∑
j∈adjk

ρ

2
‖Ak,jxk − ztk,j‖2.

(7)

At the aggregation step, each aggregator conducts averaging based on the information collected from the
related two areas. The computing procedure at Step (t+ 1) is summarized as follows.

xt+1
k = argmin

xk∈Xk

Lk(xk; ztk,λ
t
k), k = 1, · · · ,K (8a)

zt+1
i,j =

1

2
(Ai,jx

t+1
i +Aj,ix

t+1
j ), (i, j) for all aggregators (8b)

λt+1
k = λt

k + ρ(Akx
t+1
k − zt+1

k ), k = 1, · · · ,K (8c)
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Both x and z are solved through optimization procedure. Due to the particular structure of consensus
ADMM, the consensus variable z’s solution at each step can be found by using averaging [8].

In this paper, we directly implement consensus ADMM’s algorithm into OPF. Equations (4) and (8b)
are the averaging step for consensus variable update. The implementation strictly follows consensus ADMM
and hence it is guaranteed to lead to optimality should the original problem is a convex problem. Since the
problem we are dealing with is a nonconvex problem, achieving convergence is tricky. That is the reason
that several techniques are adopted in the paper, including introduction of auxiliary variables, network
partitioning strategy and penalty factor updating.

3. New Auxiliary Variables for Convergence Improvement

A major challenge of the ADMM formulation presented in Section II is its slow convergence speed. This
issue has been identified in the literature [22]. [22] presents two techniques to improve the convergence
speed. One is to vary the penalty factor ρ. The other is to use auxiliary variable. The latter can lead to
more significant improvement in convergence.

In this section, the auxiliary variable technique in [22] will be first described. We then present our new
auxiliary variable technique. With the introduction of the new auxiliary variables, the ADMM procedure is
revisited. In addition, penalty factor updating technique is also incorporated.

3.1. Auxiliary variables in [22]

We again use the two areas in Fig. 2 for explanation. In order to make sure the duplicated voltages
converging to a same value, the constraints V i,1 = V i,2, V j,1 = V j,2 should be enforced through the
consensus ADMM process. In [22, 23], the equivalent constraints are given as

V i,1 − V j,1 = V i,2 − V j,2, V i,1 + V j,1 = V i,2 + V j,2. (9)

The auxiliary variables in Area 1 are defined as

z1 =

[
z−ij,1
z+ij,1

]
= A1x1 (10)

where
z−ij,1 = β−(V i,1 − V j,1), z+ij,1 = β+(V i,1 + V j,1) (11)

β− and β+ are set to be β− � β+ > 0, which gives more weight to V i,1−V j,1 since it is strongly related
to the power flow through tie-line i− j. The consensus condition between area 1 and 2 is given in (12).

z−ij,1 = −z−ji,2, z+ij,1 = z+ji,2 (12)

3.2. Proposed auxiliary variables

Inspired by the above idea on auxiliary variable definition, we reexamine the power flow expression on
the tie-line i− j and aim to designate a new set of auxiliary variables for further convergence improvement.
Notate the branch index of this line as k. Assume that the line is represented by a π circuit with the series
admittance yk = 1/(Rk + jXk) and two shunt admittances jbk/2. The complex power flowing from Bus i
to Bus j is:

Sij =

(
y∗k + j

bk
2

)
V 2
i + y∗kV iV

∗
j . (13)

Instead of enforcing V i,1 = V i,2, V j,1 = V j,2, we opt to enforce

V i,1V
∗
j,1 = V i,2V

∗
j,2.
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Note the original constraints have two equality constraints of complex variables or four equality constraints
in the real domain. The new constraint, however, has only one equality constraint in the complex domain
or two constraints in the real domain. We add two more constraints:

V 2
i,1 = V 2

i,2, V 2
j,1 = V 2

j,2.

The new set can then replace the old set. Note the newly introduced auxiliary variables are indeed the
decision variables of second-order conic relaxation (SOCP) relaxation of AC OPF [9].

Instead of using the polar form of voltage phasor, we now use the rectangular form of voltage phasor
(V i = ei + jfi) to avoid trigonometric functions such as cos θij . The new set of variables related to a tie-line
are defined as follows.

cii = V 2
i = e2i + f2i

cjj = V 2
j = e2j + f2j

cij = ViVj cos(θi − θj) = eiej + fifj

sij = ViVj sin(θi − θj) = fiej − eifj

(14)

To achieve consensus between Area 1 and Area 2, the following constraints should be met.

cii,1 = cii,2, cjj,1 = cjj,2, cij,1 = cji,2, sij,1 = −sji,2 (15)

One more step is carried out to make sure that each auxiliary variable contains the information from
Bus i and Bus j. Hence, the first two variables will be replaced by their sum and difference. Finally, the
two auxiliary variable vectors m+

12 and m−12 are found and presented in (16).

m−12 = β−
[
cii,1 − cjj,1

sij,1

]
(16a)

m+
12 = β+

[
cii,1 + cjj,1

cij,1

]
(16b)

where β− and β+ are multiplier factors to give more weight on z−, which providing convergence on an
approximate linear problem on power flow on tie-lines. Therefore, the consensus vector between Area 1 and
Area 2 can be expressed as

m1,2 =

[
m−12
m+

12

]
(17)

Note that with our proposed auxiliary variables, we no longer have the linear relationship between the
primary decision variables xk and the exchanging information zk. A corresponding mk will be created based
on xk to aggregate all exchanging information from Area k. The consensus constraint is mk = zk for area
k, where zk is defined as the consensus variable vector for Area k.

3.3. ADMM Based on Proposed Auxiliary Variables

The brief algorithm of the proposed ADMM AC OPF is summarized in Algorithm 1. For initialization
in line 2, we use 1 pu voltage magnitude, random phase angles to set all voltage phasors in rectangular form.
We properly choose ρk0 to compromise of better convergence and less gap. Note that the exchange message
m in line 6 is prepared for all the neighbors of local area k. The weighting factors β− and β+ should be
chosen in a way that β− � β+ > 0.

To enhance the ADMM convergence performance, penalty parameter ρ updating principle, detailed in
[22], is added after λ update. We increase the penalty parameter only if the primal gap is not decreasing
sufficiently. We first check the primal gap decrease in area k via

ρt+1
k =

{
ρt+1
k if Γt+1

k ≤ γΓt
k

τρtk otherwise
(18)
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Algorithm 1: New auxiliary variable ADMM AC OPF

1 Input : Partitioning the power system into K areas
2 Initialize: Local variables xk0, auxiliary variable zk0, Lagrange multipliers λk0 and penalty

parameters ρk0
3 while Step= t & Gapmax ≥ threshold do
4 for area k = 1 to K do
5 Update local variables xt

k+1 via:

xt+1
k = argmin

xk∈Xk

Lk(xk; ztk,λ
t
k,ρ

t
k)

Prepare exchange messages between every adjacent area: h ∈ adjk based on solved xt+1
k . If

there is only one tie-line i− j between the two areas, then:

mt+1
k,h =

β
−
[
ct+1
ii,k − c

t+1
jj,k

st+1
ij,k

]
β+

[
ct+1
ii,k + ct+1

jj,k

ct+1
ij,k

]


end
6 for all adjacent areas do
7 Update consensus variables zk,h:

(z−k,h)(t+1) =
1

2

(
(m−k,h)(t+1) − (m−h,k)(t+1)

)
(z+k,h)(t+1) =

1

2

(
(m+

k,h)(t+1) + (m+
h,k)(t+1)

)
end

8 for area k=1 to K, Update Lagrange multipliers via: do

λt+1
k = λt

k + ρtk(mt+1
k − zt+1

k )

9 Update the local gap via:

Γt+1
k = ||mt+1

k − zt+1
k ||∞

10 Update local penalty parameters via:

ρt+1
k =

{
ρt+1
k if Γt+1

k ≤ γΓt
k

τρtk otherwise

11 Correct local penalty parameters via:

ρt+1
k = max(ρt+1

k , ρt+1
h )

end

end

with constants 0 < γ < 1 and τ > 1, and with a measure of the primal gap (in infinity norm) in (19):

Γt+1
k = ||mt+1

k − zt+1
k ||∞ (19)

The penalty parameter updating constants γ and τ should be set close to 1 to avoid a rapid increase in
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penalty parameters. Tuning ADMM parameters is depended on empirical studies. Reference [28] gives some
selection rules on turning ADMM parameters for specific problems.

Eq. (20) is to select the larger ρ between any two neighbor areas, e.g. k and h.

ρt+1
k = max(ρt+1

k , ρt+1
h ) (20)

4. Spectral Partitioning

To automatically partition a power network with N buses, we use spectral clustering technique. Our
objective is to have multiple subareas. The buses inside the same subarea are tightly connected while any
two subareas are connected less tightly. The admittance matrix Y of a power grid can represent the bus
connectivity. If two buses (i and j) are tightly connected, then a large magnitude of Yij is expected. If they
are loosely connected, a small magnitude of Yij is expected. If they are not connected, then the admittance
is zero (Yij = 0).

To apply the spectral clustering technique, a graph Laplacian L is required and its eigenvalues and
eigenvalues will be computed. If a grid will be divided into K subareas, then the first K eigenvectors
corresponding to the first K eigenvalues (0 = λ1 ≤ λ2 ≤ · · ·λK ≤ · · · ≤ λN ) will be used for clustering. A
tutorial on spectral clustering can be find in [29].

We first obtain an adjacent matrix W with its diagonal elements as 0 and non-diagonal elements as the
absolute values from the Y matrix:

W =


0 |Y1,2| . . . |Y1,N |
|Y2,1| 0 . . . |Y2,N |

...
...

. . .
...

|YN,1| |YN,2| . . . 0

 (21)

The Graph Laplacians (L) will be built as follows.

L = D −W (22)

where D is a diagonal matrix and its ith diagonal component is notated as di where di =
∑

j Wij .
The Laplacian matrix will be normalized:

Lsym = D−1/2LD−1/2 (23)

The ith eigenvalue λi and eigenvectors vi have the following relationship (24):

Lsymvi = λivi. (24)

Since Lsym is symmetric, the eigenvalues are real and non-negative. These eigenvalues are also called as the
spectrum of the normalized Laplacian.

The first K eigenvectors will be used to form a N ×K matrix V :

V =
[
v1 v2 · · · vK

]
. (25)

We then apply the k-means clustering algorithm on V . V ’s each row is a data point and there are N
data points. The k-means clustering algorithm tries to group theN data points to K groups. The clustering
is conducted in a heuristic approach described as follows.

1. Randomly choose K cluster centroids cj , j = 1, · · · ,K.

2. Assign each data point to one of the clusters with closest Euclidean distance. The objective is to
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minimize the sum of the Euclidean distances from a data point to its cluster’s centroid.

J = min

K∑
j=1

∑
i∈Sj

||yi − cj ||2 (26)

where Sj is the set of data points that are assigned to jth cluster, yi is the ith row of V .

3. Based on the assignment of data points to each cluster, recalculate the centroids for each cluster.

4. Repeat step 2 and 3 until the the new centroids do not differ from the old ones.

The MATLAB spectral partitioning toolbox [30] is used in this research. The toolbox gives partitioning
results based on both the graph Laplacian or its normalized matrix. The normalization step can improve
the convergence in the k-means process. For example, it can reduce the iterations from 9 to 4 in partitioning
IEEE 300-bus network. Two example network partitioning results are listed in Table 1.

5. Case Study Results

In this section, we present case study results and a comparison between our proposed auxiliary variables-
based approach and the existing approach in the literature. First, spectral partitioning of system network
is conducted. Second, each AC OPF is solved using the proposed ADMM procedure. Parameter setting is
presented. The convergence performance and AC OPF solutions of new proposed auxiliary variables-based
ADMM are compared with those based on ADMM in the literature. The performance will be discussed
through comparing with the auxiliary variables setting in [23]. Additionally, the effect of partitioning
number will be presented.

5.1. Parameter Settings

All the local variables xk0 are set to random values within the upper and lower bounds. We make sure
the initial voltage magnitudes are 1 pu. The consensus variables zk0 are set to have 1 pu voltage magnitudes.
The initial Lagrange multipliers λk0 are set to zeros.

The proposed new auxiliary variable-based ADMM will be compared with the ADMM in [22, 23]. Same
parameter settings are used. The penalty parameters ρk0 are set to be large enough to guarantee the
convergence. Its incremental step size τ and γ are set as τ > 1 and 0 < γ < 1, respectively. As a rule of
thumb, it is highly possible to find a better solution if both τ and γ are set closer to 1, but it will take more
iterations to reach the threshold generally. In our cases, most cases are tested in τ = 1.05 and γ = 0.9,
except the 1354-bus network. The weighting constants should be chosen in such a way that β− � β+ > 0.

Here, β− = 1, β+ =
1

5
. The threshold of error for convergence check is selected at 10−5, which is the

maximum mismatch of ‖mk − zk‖∞ among all areas.
To individualize the impact of penalty factor and proposed auxiliary variable, we carried out three case

studies on 14-bus system. In first two scenarios, we show that increasing penalty factor ρ by five times
makes convergence faster and the iteration steps reduce from 35 to 23 to achieve a tolerance of 10−3. In the
third scenario, we show that by introducing the proposed auxiliary variables, with the penalty factor intact,
the iteration steps reduce from 35 to 13. The plots are presented in Fig. 4. This set of studies indicate
that larger penalty factor results in a faster convergence while using auxiliary variables results in even faster
convergence. The effect of auxiliary variable on convergence is more significant compared to that of the
penalty factor.

5.2. Convergence Performance

In Table 2, all relevant parameter settings and final solutions are listed. The results that area generated
by the centralized AC OPF using MATPOWER [31] are given first. Two ADMM methods are compared:
our proposed auxiliary variable-based ADMM and the existing auxiliary variable-based ADMM in [22, 23].
Note that we applied the spectral clustering algorithm to generate the same partition result for each case.
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The objective functions, constraints, parameter settings, and penalty factor updating algorithm are the same
for the two methods. The only difference is the definition of the auxiliary variables. Both ADMM methods
generate comparable objective values. Their differences to the MATPOWER results notated as gap are
comparable. It can be seen that the computational cost per iteration of the proposed ADMM increases
slightly from the method in [22, 23] while the iteration steps reduce. This is due to a more demanding use
of auxiliary variables. The overall computational cost for two approaches are comparable.

In Fig. 5, the voltage phasor on each bus (V ), power generation(Pg, Qg), objective function value and
maximal mismatch (||mk − zk||∞) of the proposed ADMM are presented for IEEE 30-, 57-, 118-, 300- and
1354-bus power systems, respectively.

The first column presents the voltage outputs from both our proposed ADMM and MATPOWER. The
second column presents Pg and Qg. It can be seen that those variables converge.

The 3rd and 4th columns present objective values and maximal mismatch. A comparison of the effect
of our proposed auxiliary variables versus that of the existing auxiliary variable [23] is made in these two
columns. Note in [23], the auxiliary and consensus variables are defined differently from our paper. The
mismatches compared are referring to the same set of variables. It can be clearly seen that the proposed
ADMM shows significant improvement on ADMM convergence in most cases. Especially on 57-bus, 300-bus,
and 1354-bus networks, the mismatch of proposed method converged faster than another one.

5.3. Impact of Partition Numbers

To test the flexibility and robustness of our spectral partitioning with new auxiliary ADMM method, we
used various partitioning scenarios for the IEEE 300-bus system. In the following tests, the 300-bus network
is partitioned into 10, 20, 30, 40 and 50 areas, respectively. All the parameter settings are identical.

Fig. 6 presents two figures to demonstrate the performance of proposed auxiliary variables-based ADMM
for different numbers of partitioning areas. Based on the plots of the objective values, we can see that the
final optimal results are very close to each other for different partitioning scenarios. The mismatch plots
show that similar iteration numbers are required to achieve 10−5 threshold under different partitions. Hence,
our algorithm is robust against partitioning areas.

6. Conclusion

In this paper, we proposed new auxiliary variables for information exchange in ADMM for large-scale
nonconvex AC OPF solving. The new auxiliary variables are proposed based on the tie-line power flow
expressions. They align with the decision variables used in SOCP relaxation of AC OPF. Unlike the existing
auxiliary variables, the new auxiliary variables are not linearly related to the local decision variables. We
present a clear information structure of the proposed ADMM and compared the new auxiliary variables-based
ADMM with the exiting auxiliary variables-based ADMM. Significant improvement has been demonstrated
for all test cases.
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{12-16,23};
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Table 2: Case study results

Case
MATPOWER

Min Cost
($hr)

ADMM
Min Cost

($hr)
Gap Areas ρk0 β− β+ γ τ

Ave time
per area

(s)
Iterations

30-bus 574.52
[22] 577.31 0.48% 5 1× 105 1 1/5 0.9 1.05 0.41 87

Proposed 577.87 0.58% 5 1× 105 1 1/5 0.9 1.05 0.79 63

57-bus 41758.18
[22] 41758.18 0.04% 7 3× 105 1 1/5 0.9 1.05 0.94 151

Proposed 41752.90 0.03% 7 3× 105 1 1/5 0.9 1.05 0.91 113

118-bus 129660.70
[22] 130240.66 0.44% 20 5× 105 1 1/5 0.9 1.05 1.03 155

Proposed 130144.07 0.37% 20 5× 105 1 1/5 0.9 1.05 1.16 123

300-bus 719725.11
[22] 720031.57 0.04% 30 5× 105 1 1/5 0.9 1.05 0.80 182

Proposed 719833.33 0.01% 30 5× 105 1 1/5 0.9 1.05 1.22 148

1354-bus 74060.41
[22] 74453.89 0.53% 60 5× 105 1 1/5 0.99 1.02 2.44 226

Proposed 74472.94 0.55% 60 5× 105 1 1/5 0.99 1.02 3.53 180
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Figure 5: Performance of the new auxiliary variable-based ADMM.
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