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Motivation

I The volatile net load profiles caused by increased deployment of penetration of
photo-voltaic panels (PVs) in the distribution networks.

I The successive switching actions by conventional voltage control devices (switched
capacitor banks (SCBs), on-load tap changers (OLTCs) and voltage regulators) to
keep voltage magnitudes within limits.

I The need for coordination of PV inverter’s reactive power generation/absorption
with conventional devices.

I The need to abide by desired voltage limits at all buses, especially those of voltage-
dependent loads.
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Objectives

I Formulate a day-ahead optimization problem, centrally performed by distribution
system operator (DSO), that finds a global optimal solution (optimal tap and ca-
pacitor setting and dispatch of PV VARs).

I Formulate linear models for OLTC and SCBs that exhibit their accurate switching
behavior in response to voltage deviations from desired.

I Formulate an oversized PV inverter capable of generating/absorbing VARs up to
46% VARs of its nameplate during peak.

I Formulate an objective function that minimizes losses, flatten voltages (comply with
CVR practices), and limit inter-temporal switching efforts of OLTC and SCBs.
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Distribution Power Flow
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The following equations describe the non-linear power flows in radial distribution
systems [1].

Pij =
∑

k:(j,k)∈E
Pjk + rij`ij + pL

j − p
g
j (1a)

Qij =
∑

k:(j,k)∈E
Qjk + xij`ij + qL

j − q
g
j − q

c
j (1b)

vj = vi − 2(rijPij + xijQij) + (r2
ij + x2

ij)`ij (1c)
`ij = (P 2

ij +Q2
ij)/vi (1d)

Pij , Qij : Power flows
vi: Squared voltage
`ij : squared current
L: Load
g: PV power
c: SCB VAR
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Convexification

I The problem in (1) is nonlinear, which is in general hard to solve and no
off-the-shelf solver is available to guarantee neither convergence nor optimality.

I A second-order conic programming relaxation is proposed by [2] to modify (1d) as
follows:

`ij ≥ (P 2
ij +Q2

ij)/vi (2a)∥∥∥∥[2Pij 2Qij `ij − vi

]T ∥∥∥∥
2
≤ `ij + vi (2b)
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OLTC Model

The secondary-side voltage of the OLTC is increased/decreased by changing the turns
ratio so as to affect the nodal voltages and power flows of the entire distribution
system. The OLTC model is

tij =
(
tmin + ∆tijx

)
(3)

0 ≤ x ≤ xmax ∆tij = (tmax
ij − tmin

ij )/xmax (4)

tij : OLTC ratio
tmax
ij & tmin

ij : Turns ratios,
∆tij : Change per tap
x ∈ X : Tap position

A linearized version of the exact model can be obtained using binaries

Tij =
X∑

x=0
(tmin

ij + ∆tijx)2ux

X∑
x=0

ux = 1 (5)

vij = Tijvi (6)

Binaries, ux, are summed
to one to force one
selection of ratio
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SCB Model

A set of switchable capacitors can be installed at the jth node, where each capacitor is
switched on to increase the voltage at the node of installation and adjacent nodes.

0 6 Cj 6 Nc (7)

qc
j = Qc

Cj

Nc
(8)

qc
j : SCBs’ variable
Qc: Total VARs
Nc: Number of the SCB
units
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PV Model

In order to represent the operating points shown in
the figure, the reactive-power constraint is expressed
as

|qg
i | 6

√
(sg

i )2 − (pg
i )2 (9)

where sg
i is the inverter’s nameplate, whereas pg

i is
the PV’s forcasted active power.

𝑞𝑚𝑎𝑥
𝑔

 

𝑞𝑚𝑖𝑛
𝑔

 

-𝑞𝑚𝑎𝑥
𝑔

 

-𝑞𝑚𝑖𝑛
𝑔

 

𝑝𝑚𝑎𝑥
𝑔

 
𝑷 

𝑸 

PF limit 



9-11	September	2018	- 50th North	American	Power	Symposium

Flatness/CVR limits

The following constraints are used to keep the voltage of the ith node between minimum
and maximum thresholds.

zi > 0, zi > vi − (V thr
i min)2, zi > −vi + (V thr

i max)2 (10)

I Thresholds are chosen within ±3% to flatten. Bus voltages of voltage-dependent
loads should be regulated within the lower half.

I The lower threshold is chosen as −3% to avoid excessive voltage drop the point of
interconnection.

I zi is minimized to keep voltages in the objective function.
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Overall Problem

The overall optimization problem over T horizons is formulated as follows.

min f =
T∑
t

λloss
∑

(i,j)∈E
rij`t,ij + λcvr

∑
i∈Ncvr

zt,i

+ λflat
∑

i∈N−Ncvr

zt,i + λcap
∑

i∈Ncap

|Ct,i − Ct−1,i|

+λtap
∑

(i,j)∈Etap

|Tt,ij − Tt−1,ij |


s.t. (1a)− (1c), (2), (5)− (10)

(11)
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IEEE 33-bus system
Case studies on IEEE 33-bus system are conducted to highlight the following:
1. the impacts of cloudy day and clear day on the frequency of an OLTC’s and

SCBs’ operations.
2. the effectiveness of the centralized VVO to mitigate the equipment operations and

adhere to CVR limits by virtue of the inverter’s inherent VAR capability.

PV3

PV1PV2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

17 16 15 14

25 26 27 28 29 30 31 3218 19 20 21

22 23 24
OLTC

SCB2

SCB1
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System Specifications
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I The original peak load is 4.55 MVA with power factor of 0.82.
I Three resistive loads are modeled, each with 100 kW, at nodes 11, 23 and 26.
I OLTC turns ratio varying from 0.95 to 1.05 with tap positions constrained by
xmax = 32.

I Two SCBs, each with a total of 360 kVAR and three switchable units (Nc = 3).
I The figure depicts a loading curve and clear/cloudy PV profiles by the total MW.
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System Specifications

The optimization problem is solved every 15 minutes, and multiple scenarios are carried
out interchangeably. Equipment-operation penalties are fine-tuned starting with small
values to achieve the best coordination with PV VARs.

Table: Cost Coefficients

Objective Symbol Range Cost ($)
Loss Reduction λloss - 1

CVR λcvr 0.97-1.00 pu 1
Flat Profile λfalt 0.97-1.03 pu 0.3

Tap Operations λtap 0-32 taps 3
SCB Operations λcap 0-3 units each 0.1
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Case I: Unity power factor and free actions
I λtap = λcap = 0
I At no PV, the tap actions are moderate and

following the load, while SCBs kept supplying
full VARs. However, during both clear-day and
cloudy-day PV penetrations, the tap-cap
actions dramatically increased in frequency to
cope with the dynamic net load.

Table: Operation Counts at unity PF of PVs
Equipment No PV Clear-day PV Cloud-day PV

Taps 16 36 43
SCB1 - 3 11
SCB2 - 5 8
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Figure: (a) Tap positions. (b) SCBs.
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Case II: Efficacy of flatness/CVR objectives

I keeping unity PF of PVs and
λtap = λcap = 0

I The capability of the devices is explored to
comply with the thresholds of flatness and
CVR objectives

I With (λflat = λcvr = 0): the devices
operate at their maximum bound mostly,
increasing voltage variations.

I Considering λflat, λcvr: the devices closely
abide by the flatness objectives. However,
increased switching is required.

(a)

(b)

Figure: Main feeder voltage: (a) loss
reduction only (b) flatness penalties added.
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Case II: OFF-unity PF of PVs
I With (λtap = λcap = 0): PVs are not

urged to generate/absorb enough VARs.
I As a result, the switching not only

maintains a similar behavior, but also
increased.

I Considering λtap, λcap: PV VARs
coordinates well with the OLTC taps, while
keeping SCB1 unswitched.

Table: Cloudy-day Operations at off-unity PF of PVs
Equipment With PV VARs With PV VARs & switching penalties

Taps 47 20
SCB1 12 -
SCB2 - -
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Figure: (a) Tap positions. (b) SCBs.
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Case II: OFF-unity PF of PVs
The reactive/capacitive PV VARs boost to coun-
teract the peaks and valleys of PV active power.
The resulting voltage profiles are further im-
proved
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Figure: VARs from each inverter with and without switching penalties.
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Figure: Compensated voltages (a) with
and (b) without switching penalties.
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Exactness of SOCP

The SOCP relaxation is said to be exact if the
subtraction both sides of the SOCP inequality
constraint satisfies a sufficiently small error.

Exactness =
∑
t∈T

∑
(i,j)∈E

|`t,ij − (P 2
t,ij +Q2

t,ij)/vt,i|

(12)
0 5 10 15 20 25 30

Lines

0

0.2

0.4

0.6

0.8

1

1.2

E
xa

ct
ne

ss

10 -7

Figure: Exactness of the centralized VVO
solution.
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