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Motivation
I The unprecedented reformation that the modern distribution network is undergoing

(will undergo) because of the increased deployment of distributed energy resources
(DERs).

I Although DERs are immensely beneficial to the system, higher penetrations with ill-
managed operation could fail to deliver the desired outcome, causing sharp voltage
fluctuations, power flow congestion and supply-demand imbalance.

I The lack of adopting a convex multiphase power-flow distribution model that ex-
hibits the practical system structure in the literature [4]-[10].

I The fact that DERs are currently seen as if they were connected to the T-D interface,
disregarding the distribution.

I The need to incentivize the various resources to respond according to: i) loading
at the phase of installation ii) their location (loss compensation), and iii) their
capacity.
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Objectives

I Design an electricity market for distribution that adopts locational marginal pricing
to quantify and analyze signals sent to future-market for each phase.

I The optimization problem is centrally performed by a non-profit entity -distribution
system operator (DSO), that to collect bids from participants including ISO at
the wholesale level, control volt-var and DER assets, and settle the market, while
abiding by the system physical and security constraints. .

I Clear the market with a day-ahead point forecast of loading and substation/DER
supply.

I Leverage a convex multiphase distribution model to guarantee a global optimum
solution.
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Distribution Electricity Market
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Figure: Distribution electricity market
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Variables 3-φ Branch Flow Model
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Figure: Variables in SDP relaxation of three-phase OPF.
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Ohm’s Law

The following equations are defined for branch ρ(i)→ i, assuming Φi = Φρ(i) [1]

Vi =Vρ(i) − ziIi (1)

By multiplying both sides by their Hermitian transposes, and defining
vi = ViV

H
i , vρ(i) = Vρ(i)V

H
ρ(i), Si = Vρ(i)I

H
i and `i = IiI

H
i , then (1)

can be re-written as

vi = vρ(i) − (SizHi + ziS
H
i ) + zi`iz

H
i ∀ i ∈ N+ (2)

Vi & Ii ∈ C|Φi|.

zi ∈ C|Φi|×|Φi |.

Diagonal entree
of vi ∈ C|Φi|×|Φi |
and
`i ∈ C|Φi|×|Φi |
are squared
magnitudes and
off-diagonal are
complex mutual
elements.
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Power Balance

For each ρ(i)→ i→ k where k ∈ δ(i), to interpret the power balance at i, (1) is
multiplied by IHi

ViI
H
i = Vρ(i)I

H
i − ziIiIHi (3)

Vi
( ∑
k∈δ(i)

IHk − IHi inj
)

= Si − zi`i (4)

As a result, the power balance at bus i is the diagonal of (4)∑
k∈δ(i)

diag(Sk)− si = diag(Si − zi`i) ∀ i ∈ N+ (5)

where

si = sgi + ssvc
i − sLi (6)

Ii inj: Current
injection.

si ∈ C|Φi|: Net
power injection .

L: Load.

g: PV/wind DG.

svc: Static-Var
compensator.
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PSD and Rank-1 Matrix

To set the relationship among the variables, the following positive and rank one matrix
is defined

Xi =
[
Vρ(i)
Ii

] [
Vρ(i)
Ii

]H
=
[
vρ(i) Si
SHi `i

]

Xi � 0 ∀ i ∈ N+ (7)
rank(Xi) = 1 ∀ i ∈ N+ (8)
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Distributed Generators
It is essential that inverters of both PVs and wind be equipped with curtailment
capability so as to dispatch an appropriate amount of generated active power for
market clearing. The set of inequality limits constraints, DG = PV +WT , is as
follows

DG ={sgi ∈ C|Φi| | 0 ≤ real(sgi ) ≤ P
g
i

− a real(sgi ) ≤ imag(sgi ) ≤ a real(s
g
i )} ∀ i ∈ Ng

(9)

a =
√

1− PF2/PF (10)

where

P gφi = ωφ
( ∑
i∈N+

∑
φ∈|Φi|

real(sLφi )/|PV| × |Φi|
)
∀ i ∈ DG (11)

P gi : The
maximum DG
power
generation.

a: Fixes
inverter’s power
factor

ω ∈ R|Φi|:
Penetration level.
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Static-Var Compensators and Voltage Limits

Voltage profile can be improved by dispatching SVCs to either generate or absorb
reactive powers.

SVC ={ssvc
i ∈ C|Φi| | real(ssvc

i ) = 0
− q ≤ imag(ssvc

i ) ≤ q} ∀ i ∈ Nsvc
(12)

Except for the substation node (v0 = V0V
H

0 ), ±5% of the nominal voltage are
enforced as bounds on each element of the diagonal voltage squares.

V 2 ≤ diag(vi) ≤ V
2 ∀ i ∈ N+ (13)
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DSO Optimization Problem

The objective is to minimize market participants’ generation costs ahead of a day
(|T | = 24)

min
vi,`i,Si,s

g
i ,s

svc
i

f =
∑
t∈T

∑
φ∈Φi

(
σPs real(S

φφ
t,1 ) + σQs imag(Sφφt,1 )

+
∑
i∈Ng

σPg real(s
gφ
t,i ) + σQg imag(sgφt,i )

+
∑
i∈Nsvc

σsvcimag(ssvcφ
t,i )

)
s. t. v0 = V0V

H
0

(2), (5), (7), (8), (9), (12), (13)

(14)

where σ denotes the generation bidding price with superscripts P and Q for active and
reactive power, while St,1 is the power flow from the substation.
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Convexification

I The non-convex optimization problem in (14) is convexified by removing
(relaxing) the rank constraint (8). Thus, an SDP-relaxed problem is obtained.

I In [1], it has been shown that a tight relaxation holds for most IEEE distribution
feeders. For validation, a tightness check will be conducted for the case studies.
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Distribution Locational Marginal Pricing (DLMP)
The Lagrangian function of the general form [2] for the overall single-period problem,
with emphasis on the power balance equation, is

L = f(x) +
∑
i∈F

λfi fi(x) +
∑
i∈H

µhi hi(x)

+
∑
i∈N+

∑
φ∈|Φi|

λpφ
i real

( ∑
k∈δ(i)

Sφφk − s
φ
i − S

φφ
i + (zi`i)φφ

)
+
∑
i∈N+

∑
φ∈|Φi|

λqφ
i imag

( ∑
k∈δ(i)

Sφφk − s
φ
i − S

φφ
i + (zi`i)φφ

) (15)

The partial derivative of (15) w.r.t real(sLφi ) and imag(sLφi ) result in

A-DLMP : ∂L
∂ real(sLφi )

= λpφ
i , R-DLMP : ∂L

∂ imag(sLφi )
= λqφ

i (16)

Each A-DLMP and R-DLMP accumulates an energy price, a loss price, and a congestion price.
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IEEE 37-bus Feeder and Profiles of Load,PV and wind from CAISO [3]
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Passive Network

(a) (b) (c)

(d) (e) (f)

Figure: (a)-(c) Active-power DLMPs, and (d)-(f) reactive-power DLMPs for passive network.
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Passive Network
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Figure: A-DLMPs and R-DLMPs at peak hour 13:00.
I The system runs as a passive distribution network, and only includes the SVC with

bidding prices σPs =15$/kWh and σQs = σsvc =3$/kVarh.
I A common trend of ADLMPs and RDLMPs is that they gradually increase as buses locate

farther from the substation.
I A-DLMPs among the three phases differ notably because of the unbalanced loads and line

impedances (losses).
I R-DLMPs increase in a similar trend except at buses near the SVC at bus 28.
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Active Network

(a) (b) (c)

(d) (e) (f)

Figure: (a)-(c) Active-power DLMPs, and (d)-(f) reactive-power DLMPs for active network.
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Active Network

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

0.25

0.3

q  (
$/
kV
ar
h)

P  
($

/k
W
h)

Bus

B
C

A
B
C

qA
p

Figure: Nodal change in marginal prices at 13:00 between passive and active networks.
I PV- and wind-based DGs participate in the market with the same bidding prices as the

substation and 40% penetration.
I DLMPs change with the participation of DGs, mostly at times when DGs produce

excessive power (peak).
I A lower net demand is viewed as light loading, and thereby it cuts down on DLMPs.
I manifests the change in marginal prices at 13:00, where ∆p and ∆q are the difference of

DLMPs between the cases and this case. The change is the DG contribution to reducing
losses, especially those of remote lines, and alleviating the SVC binding cost.
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Active Network
Table: DG Active-power Output and A-DLMPs at 13:00

A B C

kW $/kWh kW $/kWh kW $/kWh

Sub. 144.9 15 71.3 15 371 15
PV4 109.2 15.0154 103 14.9972 109.2 15.0567
PV18 109.2 15.0494 76.7 14.9983 109.2 15.0925
PV33 109.2 15.1776 54.7 15.0000 109.2 15.2062
WT8 8.8 15.0000 141.3 15.0119 94.9 15.0000
WT24 141.3 15.0868 100 15.0000 141.3 15.1399

I DGs are burdened at phase A and C because of the phase heavy loading, increasingl
congestion costs predominantly at distant buses.

I DGs at phase B (lightly loaded) mostly curtails its output so as to balance supply with
demand, except at WT8 due to the large load at bus 10.
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Lower DG Bidding Prices
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Figure: DLMPs at peak PV, 13:00.

I Setting σPg =$13/kWh and σQg =2$/kVarh results in reduced DLMPs in general, and they
are minimum at buses of DG installation.

I This incentivizes DG owners to increase their generation capacity to participate in
imbalance and loss reduction for the next increment of load.
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Total Daily Consumer Payment w.r.t. Penetration Level
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Figure: Change in total daily payment with DG penetrations.
The figure shows the decay of the total consumer?s payment for the entire day w.r.t.
incremental DG penetration.

Λp =
∑
t∈T

∑
i∈N +

∑
φ∈Φ

λpφ
t,ireal(s

Lφ
t,i )

Λq =
∑
t∈T

∑
i∈N +

∑
φ∈Φ

λqφ
t,i imag(sLφt,i )
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Tightness of SDP Relaxation
The rank is examined by computing the devision of the second largest eigenvalue by
the largest eigenvalue, |eig2/eig1|, where eig1 > eig2 > 0. Smaller ratios indicate the
solution proximity to being rank one. The maximum ratio is computed.

Tightness = max
(∑
t∈T

∑
eig∈X∗

t,i

|eig2/eig1|
)

Table: Tightness of Numerical Solutions

Case Tightness

1 5.1615e-07
2 6.1587e-07
3 4.9779e-07

Since the overall solution ratios satisfy sufficiently small values,
|eig2/eig1| ≤ 6.1587× 10−7, the SDP relaxation is tight.
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