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Modeling Type-4 Wind in Weak Grids
Lingling Fan, Senior Member, IEEE

Abstract—An existing wind power plant at ERCOT experi-
enced poorly damped and undamped low frequency oscillations
at 3 ∼ 4 Hz under weak grid condition. The objective of this
paper is to shed the insight of the oscillation mechanism through
linear system analysis. Two simplified models are developed
and compared against a detailed model for Type-4 wind with
weak grid interconnection. The detailed model includes grid-side
converter’s outer power/voltage control, inner current controls,
phase-locked loop (PLL), and transmission line electromagnetic
dynamics. The first simplified model uses a first-order delay to
replace the current control loop and ignores the transmission
line dynamics and PLL. The second simplified model uses the
same assumptions except that PLL is considered. Linearized
system block diagrams for the two simplified models are derived
and compared. The mechanism of the low-frequency oscillations
are explained using eigenvalue analysis and the Root Locus
method. The root causes are identified as weak grid, high wind
power export, low voltage, and low PLL bandwidth. Further, the
simplified model considering PLL dynamics is more accurate in
low-frequency oscillation mode identification and system stability
prediction.

Index Terms—Wind power plants, low-frequency oscillations,
weak grids, phase-locked loop (PLL), linear system analysis

I. INTRODUCTION

AN ERCOT wind power plant experienced poorly damped
and undamped low-frequency oscillations under weak

grid conditions [1]. The oscillation is at 3 ∼ 4 Hz. The
oscillations are undamped at high power output and poorly
damped at lower power output. The objective of this paper is
to present analytical models that are suitable for modeling and
analysis for Type-4 wind with weak grid interconnections. The
simplified models are expected to detect the low-frequency
oscillations adequately and at the same time shed insights of
the oscillation mechanism.

A. Related Works

Weak grid interconnection of wind energy systems or
voltage source converters (VSCs) pose stability issues. In
addition, low grid voltage poses stability issues for VSC grid
integration. Such phenomena have been mentioned in the
following research [2]–[10].

Among the above references, References [2]–[4], [7] exam-
ined wind energy system weak grid interconnection stability
issues. References [5], [9] examined stability issues of a
VSC with weak grid interconnection. References [6], [8], [11]
examined stability issues of different types of wind turbines
at low voltage grid fault scenarios.

Low-frequency oscillations cannot be adequately modeled
in a weak grid interconnection should the outer control loops
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and/or PLL not be modeled. For example, in [7], 100 ∼
200 Hz oscillations are observed in a grid-connected Type-
4 wind farm’s VSC with only current control modeled. Such
oscillations can be mitigated through controller tuning as
demonstrated in [7].

Low-frequency oscillations have been demonstrated in [2]–
[6], [8]–[10]. The aforementioned references all have PLL and
converters’ outer loops modeled. According to [2], ac voltage
control and ac grid strength are two influencing factors of
dynamic stability. A 2 MW permanent-magnet synchronous
wind generator was studied in [2] and it has shown that with
the system strength (indicated by short circuit ratio (SCR))
decreasing, the system will suffer oscillatory stability issues
at approximately 10 Hz, which are demonstrated as one pair
of the closed-loop system poles or eigenvalues moving to
the right-half plane (RHP). A research paper published by
Vestas engineers in 2013 [3] indicates that to facilitate weak
interconnection, a wind farm is preferred to behave as a
stiff voltage source to have better steady-state performance.
This requires a fast voltage controller. However, fast voltage
controller may result in resonances. Detailed stability analysis
was not presented in [3].

In [4], low-frequency oscillations in the dc-link voltage
in Type-3 wind with weak grid interconnections have been
researched. A reduced-order model is proposed for stability
analysis with wind being treated as current sources. High-
frequency dynamics related to induction machines and trans-
mission lines are ignored. Similar analysis has been conducted
to demonstrate 10 Hz oscillations due to a VSC with weak
grid condition [9], 6 Hz oscillations in Type-4 wind due to
grid voltage sag [6], and 9 Hz oscillations in Type-3 wind
due to grid voltage sag [8]. The four reference papers indicate
both PLL and converter’s voltage controller play roles in low-
frequency oscillations. Investigation of the impact of PLL on
stability can also be found in [5], [10]–[12].

B. Contributions

Detailed models provide accurate analysis results. A de-
tailed model for Type-4 wind farm with machine dynamics,
generator-side converter controls, grid-side converter controls,
PLL and grid dynamics is presented in [2]. Analysis of a grid-
connected VSC in [5] is also based on detailed model with grid
dynamics, PLL and converter controls represented.

While the benefit of detailed models is obvious, to pro-
vide insights of oscillation mechanism, simplified models are
sought. Practice in Vestas [3] indicates that for power grid
dynamics, the wind machine dynamics and generator-side con-
verter controls can be omitted. The omission of wind machine
dynamics is also adopted in [4] for modeling Type-3 wind farm
to study low-frequency oscillations in dc-link voltages. In [4],
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a Type-3 wind farm is treated as two current sources from the
rotor-side converter and the grid-side converter. The current
orders are determined by the outer power and voltage controls.
Current control loops are ignored while PLL is considered in
the study model.

Further simplified model with PLL ignored has been inves-
tigated in the author’s prior work [13]. Using this model, we
successfully explained the causes of low-frequency oscillations
due to low SCR.

Though there have been plenty of research available on
modeling low-frequency oscillations in a Type-4 wind or a
VSC with weak grid interconnection, it is still not clear up
to which stage of simplification, a model can still provide
adequate analysis of low-frequency oscillations and what is
the impact of ignoring or not ignoring PLL on accurate
oscillation analysis. Further, there is a need of a summary
paper on different types of models as well as their comparison.
This paper addresses the above two concerns.

Generally, dynamic model reduction can be classified into
two categories. The first approach is based on physical system
understanding and manual reduction, e.g., [14]. In [14], the re-
duced model is derived by ignoring transmission line dynamics
and current control dynamics. The second approach is based
on system reduction theory, e.g., singular perturbation method
used in [15]. Implementation of singular perturbation method
also requires physical system understanding to separate fast
and slow dynamics. The first approach is adopted in this
paper to obtain simplified models through trial and error.
Since the focus of this paper is to shed insights on low-
frequency oscillations through model simplifications, using
formalized method for model reduction will be the topic of
further research.

In this paper, we present two types of nonlinear simplified
models and derive the related linear system block diagrams.
Through the Root-Locus method and using the block diagrams,
oscillation mechanisms as well as influencing factors are
identified.

A detailed model with converter’s current feedback controls,
outer control loops, PLL and grid dynamics is built as the
benchmark model. The two simplified models are compared
against the detailed model for eigenvalue plots and simulation
results. The comparison against the benchmark model indi-
cates which model is better in capturing essential dynamics
related to wind with weak grid interconnection.

In addition to the modeling and validation efforts, a high-
light of the contribution is the explanation of the low-
frequency oscillation mechanism using linear system block
diagrams. This approach clearly explains the effect of PLL
bandwidth on system stability.

C. Organization

The rest of the paper is organized as follows. Section
II presents the benchmark model. Section III presents the
two simplified model with inner current control loop being
replaced by a first-order delay, and grid dynamics ignored. The
two simplified models differ from the inclusion or omission of
PLL dynamics. Section IV presents the comparison of the two

models against the benchmark model on small-signal analysis
and time-domain simulation. Section V presents the symbol-
based linear systems using simplified models. Investigation of
low-frequency oscillation mechanism is then conducted using
eigenvalue analysis and the Root-Locus method. Section VI
concludes the paper.

II. THE DETAILED MODEL (MODEL 1)
The study system is shown in Fig. 1 and the modeling block

diagram of the system is shown in Fig. 2.

Converter Grid
R         L

v vPCC
Rg         Lg

vg

Fig. 1. Circuit diagram of the system.

A Type-4 wind farm model consists of grid-side converter
controls (outer power and voltage control, inner current con-
trol), PLL, dc-link dynamics, machine-side converter controls
and permanent magnetic synchronous machine dynamics.

For power system dynamic study that are concerned with
dynamics in the bandwidth of 0 ∼ 10 Hz, the dc-link dynam-
ics, machine-side converter controls and machine dynamics
are ignored. The similar assumption was also made in Type-3
wind farm stability analysis in [4].

A. Reference frames
PLL includes dq to abc reference frame conversion. A

critical step of developing analytical models suitable for small-
signal analysis is to replace the abc-frame by the grid dq-
frame, since variables in the abc frame are periodic at steady-
state. With such variables, linearization at an operating condi-
tion with state variables being constant is not possible.

The circuit dynamics are also modeled in the grid dq-frame.
The grid dq-frame has its d-axis aligned with the grid voltage’s
space vector ~vg . The grid is assumed to have a constant
nominal frequency ω0 and the grid voltage’s initial angle is
0. Therefore, the space vector of the grid voltage can be
expressed as: ~vg = Vge

jω0t, where Vg is the magnitude.
The current controllers deal with dq currents based on the

converter dq-reference frame. This dq-frame aligns its d-axis
with the PCC voltage space vector ~vPCC.

The three-phase currents ia, ib and ic form a space vector

~i =
2

3

(
ia + ibe

j 2π
3 + ice

−j 2π
3

)
.

The PLL outputs an angle θ to track the angle of PCC
voltage’s space vector (notated as θPCC). The converter dq-
frame currents, the grid dq-frame currents, and the current
space vector have the following relationship:

(icd + jicq)e
jθ =~i = (igd + jigq)e

jω0t,

where the superscript c notates the converter dq-frame and the
superscript g notates the grid dq-frame.

Therefore, the currents in the two dq-frames have the
following relationship:

(icd + jicq)e
j∆θ = igd + jigq ,

where ∆θ = θ − ω0t.
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Fig. 2. Block diagram of the system.

B. PLL

A second-order PLL (details can be referred in Chapter 6
[16]) is modeled and shown in Fig. 3. After the abc/dq block
with θ as the input angle, the PCC voltage is in the converter
dq-frame.

VPCCe
j(θPCC−θ) = VPCCe

j(∆θPCC−∆θ) = (vcPCC,d+jv
c
PCC,q),

where ∆θPCC = θPCC − ω0t and VPCC is the magnitude of
the PCC voltage.

abc/dq

vPCC,d

PI
q

vPCC

PI
q

+
-

DqPCC

(a)

(b)

vPCC,q Dω +
+

ω0

Dω DVPCC e
jd 

d

VPCC VPLL

vPCC,q

c

c

c

Fig. 3. Block diagrams of a PLL. (a) Original PLL.(b) PLL in dq-frames.

The dq components are:

VPLL = vcPCC,d = VPCC cos(∆θPCC −∆θ)

vcPCC,q = VPCC sin(∆θPCC −∆θ)
(1)

vcPCC,q is fed into a PI control block to generate the
frequency deviation ∆ω. Integrating the frequency deviation
results in ∆θ. Since the input of a PI controller will be zero at
steady-state, this control guarantees that vcPCC,q becomes 0 at
steady-state. Or, the d-axis of the converter frame is aligned
with the PCC voltage.

C. Grid dynamics

The converter’s output voltages vcd and vcq are first converted
to vgd and vgq :

vgd + jvgd = (vcd + jvcq)e
j∆θ.

Together with the grid voltage, they are treated as the input of
the grid dynamics block and the outputs of this block include
currents in the grid dq-frame (igd, igq) and the PCC voltage

magnitude VPCC and the angle ∆θPCC. The dynamics of the
transmission line are described in (2).

R̃igd + L̃
digd
dt
− ω0L̃i

g
q = vgd − Vg

R̃igq + L̃
digq
dt

+ ω0L̃i
g
d = vgq

(2)

where Vg is the magnitude of the grid voltage, R̃ = R + Rg
and L̃ = L+Lg . Further, vgPCC,d and vgPCC,q can be computed
using igd, igq and their derivatives.

vgPCC,d = Rgi
g
d + Lg

digd
dt
− ω0Lgi

g
q + Vg

vgPCC,q = Rgi
g
q + Lg

digq
dt

+ ω0Lgi
g
d

(3)

VPCC and ∆θPCC can be obtained based on the dq compo-
nents from (3). The real power and reactive power measured
at the PCC voltage can be computed using VPCC and the dq-
axis currents based on the converter dq frame.

P = VPCCi
c
d, Q = −VPCCi

c
q. (4)

Eq. (4) illustrates the principal of vector control. It indicates
that P and Q can be controlled separately. In order to adjust
P , we only need to adjust the d-axis current icd. Since P is
proportionally related to the d-axis current, negative feedback
control can be adopted. In order to adjust Q or voltage,
we only need to adjust the q-axis current icq . Moreover, the
feedback control should be a positive feedback control since
Q is proportional to −icq .

The block diagram of the entire system is shown in Fig. 2.
The outer power and voltage controls are also included.

III. THE SIMPLIFIED MODELS (MODELS 2 & 3)

In the first simplified model (Model 2), we ignore electro-
magnetic dynamics in the transmission line network and treat
the network as an algebraic model. Note that in the detailed
model, the input of the network dynamics includes converter
voltages and the output includes current and the PCC voltage.
With the algebraic model representation, if the same input
and output are used, algebraic loops will be present in the
simulation model. This is due to the decoupling terms related
to the currents and the feed forward term related to the voltage
VPLL used in the converter control (shown in Fig. 2). Thus it
is necessary to treat the VSC as a current source instead of a
voltage source. The dq-axis currents injected to the grid are
assumed to have a delay from the current orders. A first-order
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transfer function 1
1+τs is used to represent the current tracking.

Such approximation has been used in analytical tuning of
the outer control loops of vector control of VSCs in grid
interconnection [17] (Chapter 8) and in motor drives [18]
(Chapter 12).

We aggregate the current feedback control dynamics and
the effect of PLL into first-order systems in Model 2, with the
current references as the inputs and the current measurements
as the outputs.

Though 20 ms is a typical value of the delay, during weak
grid conditions, the effect of phase-locked-loop (PLL) will
make the delay value longer [19]. The entire vector control
now has power error and voltage error as the inputs and its
outputs are icd and icq .

Hereafter, the superscript c will be omitted.
The second simplified model (Model 3) is similar as Model

2 except that PLL dynamics is included. The block diagrams
of the two models are presented in Fig. 4.
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Fig. 4. Model 2 and Model 3.

The difference in Model 3 and Model 2 resides not only
the inclusion of PLL dynamics, but also the selection of
time constant τ . In Model 2, the first-order transfer function
of current tracking includes PLL effect. τ will be adjusted
when the system strength is varying. In Model 3, since PLL
dynamics is explicitly included, τ will keep intact.

A. Selection of Time Constant τ for Model 2

First, we will show how τ should be selected in Model 2
related to different grid strength. The linear models from the
current orders to the dq currents are obtained numerically from
Model 1 using MATLAB function linmod.

PLL dynamics and grid dynamics are considered while the
outer loops are not considered. The parameters of the system
are given in Table I. The current loop is designed to have a
500 Hz bandwidth should the PCC voltage be stiff. The PLL
bandwidth is designed to be 70 Hz. For steady-state condition,
the power transfer level is 0.5 pu real power with unity power
factor measured at vg . A 0.1 pu step change is enforced at i∗d
at t = 0.05 seconds. The responses of id, iq , (θ− θPCC), and
(VPLL − VPCC) are shown in Fig. 5.

TABLE I
PARAMETERS OF THE SYSTEM

R 0.001 pu X 0.05 pu
Rg 0.1Xg Xg varying from 0.1 pu to 1 pu

KpPLL 200 rad/(pu.s) KiPLL 6× 104 rad/(pu.s2)
Kp 0.4758 pu Ki 3.2655 pu/s
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Fig. 5. Simulation results of step change in i∗d.

Bode plots from i∗d to id of the closed-loop system are
shown in Fig. 6. From both the simulation plots and the Bode
plots, it is clear to see that the response of the current tracking
becomes slower when the grid becomes weaker.
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Fig. 6. Bode plots: id/i∗d. The bandwidths are 20 Hz for SCR = 1, 50 Hz
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Remarks: From Fig. 6, the bandwidth of current order
tracking reduces when the system strength reduces. When SCR
is 10, the bandwidth is 200 Hz. Hence, the time constant for
the first-order transfer function τ can be chosen as 5 ms.
When SCR is 2 or 1, the bandwidth becomes 50 Hz or 20
Hz, indicating the time constant to be 20 ms or 50 ms. Table
II lists the time constant number versus the grid strength.

IV. COMPARISON OF MODELS

In this section, Model 2 and Model 3 are compared against
Model 1. Both eigenvalue calculation and time-domain sim-
ulation are carried out. Our objective is to find out which
simplified model can give more accurate eigenvalues and
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TABLE II
τ VERSUS Xg AND SCR

Xg SCR τ (s)
0.1 10 0.005
0.2 5 0.01
0.5 2 0.02
0.75 1.33 0.035
0.85 1.177 0.0425
1.0 1 0.05

time-domain responses related to the low-frequency oscillation
mode.

The parameters of the system are given in Table III. The
SCR is 1.33. Three sets of PLL parameters will be used in this
project and their bandwidths are computed using closed-loop
PLL transfer function (also shown as GPLL in Fig. 16).
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Fig. 7. Bode plots for three PLLs and their bandwidths.

To test the robustness of the simplified models, PLL with
20 Hz bandwidth is chosen for Model 3 in this Section.

TABLE III
PARAMETERS OF THE SYSTEM AT BASE CASE

Converter RL filter R = 0.001 pu, X = 0.05 pu
Grid RL parameter Rg = 0.01, Xg = 0.75 pu
PLL’s parameters KpPLL = 50.3, KiPLL = 5030 (20 Hz)

KpPLL = 200, KiPLL = 6× 104 (70 Hz)
KpPLL = 10, KiPLL = 1000 (8 Hz)

Current control Kp + Ki
s

= 0.4758 + 3.2655
s

Power control Kpp +
Kip
s

= 0.4 + 40
s

Voltage control Kpv + Kiv
s

= 0.25 + 25
s

Power level 1 pu
PCC voltage level 1 pu
τ in Model 2 0.035 s
τ in Model 3 0.017 s

A. Comparison of Eigenvalues

Eigenvalue computation is carried out for the three models.
With nonlinear dynamic models built in MATLAB/Simulink
and initial values of all states calibrated and assigned, the
dynamic models will all achieve flat runs when there is no
dynamic event applied. Based on the same operating condi-
tions, we use MATLAB’s function linmod to find the linearized
system’s models described in the form of ∆ẋ = A∆x+B∆u
and ∆y = C∆x+D∆u. The four matrices A, B, C, and D
will be provided. Essentially, linmod uses a numerical method
(small perturbation method) to find those matrices.

The power level at 0.8 pu, 1.0 pu, and 1.25 pu will
be used for steady-state computation to initialize the state
variables used in the three nonlinear models. Table IV lists
the eigenvalues from the three models at the three operating
conditions.

Model 1 includes two state variables related to the transmis-
sion line dynamics id and iq , and two state variables related
to the PLL, two state variables related to the power controller
and the voltage controller, and two state variables related to the
current controllers. Total, there are eight eigenvalues. Model
2 does not have the transmission line dynamics and PLL
dynamics. There are four state variables: two related to the
power controller and voltage controller and two related to two
first-order delay blocks of the current tracking. The number of
the eigenvalues is four. Model 3 has six eigenvalues, with two
related to the power and voltage controllers, two related to the
current blocks, and the two related to the PLL dynamics.

TABLE IV
COMPARISON OF EIGENVALUES FROM THE DETAILED MODEL AND THE

SIMPLIFIED MODEL

Model P = 0.8 P = 1 P = 1.25
1 −252.23± j135.94 −249.17± j152.48 −242.94± j169.06

−14.54± j35.72 −4.34± j27.87 9.77± j15.12
−42.83 −43.65± j1.52 −56.09
−29.77 −45.66

−6.82± j0.05 −6.83± j0.06 −6.8490± j0.07
2 −6.67± j22.90 −0.72± j22.43 15.13± j13.35

−27.81± j17.71 −31.55± j15.46 −38.78± j7.10
3 −32.48± j56.71 −37.69± j55.36 −42.50± j53.98

−15.02± j27.62 −3.55± j26.33 11.62± j14.40
−48.86± j10.79 −51.74± j10.60 −54.66± j9.82

Table IV shows that a pair of complex conjugate eigenvalues
are identified by all three models (in bold font). This mode is
significantly influenced by the power exporting level. With an
increasing power, the system can be unstable due to the pair
of eigenvalues moving to the RHP. It can also be shown that
the critical mode’s eigenvalues in Model 3 are more accurate
compared to those in Model 2.

Both Model 2 and Model 3 introduce non-existing modes
due to simplification. This type of phenomena was also doc-
umented in the literature by other researchers, e.g., [20]. In
[20], two models of VSC-HVDC are compared. One is the
detailed model and the other is a simplified model based on
DigSilent Power Factory. In this paper, Model 2 produces one
non-existing mode while Model 3 produces two non-existing
modes. Note that when power level increases, the fake modes
in both models all move towards the left half plane (LHP). In
addition, the modes all have very large damping (≥ 49.61%).
Hence, those modes will not manifest as weak grid dynamic
phenomena. That is, reducing grid strength or increasing wind
power will not make those modes dominant.

The effect of power exporting is further explained using
eigenvalue loci. Fig. 8 shows the loci for Model 1 while Fig.
9 shows the loci for Model 2 and 3. The eigenvalue loci of
Model 2 and Model 3 are compared with those of Model 1 in
one plot. Fig. 10 shows the comparison of Model 2 and Model
1, while Fig. 11 shows the comparison of Model 3 and Model
1. Similarly, the effect of Xg is shown in two figures: Figs.
12 and 13. It can be seen that for the critical low-frequency
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Fig. 9. Eigenvalue loci of a varying P for Model 2 (a) and Model 3 (b).

mode, Model 3 matches better to Model 1 compared to Model
2.
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Fig. 10. Comparison of Model 2 and Model 1 on the effect of power export.
Xg = 0.75 pu.

Remarks: From the above comparison, it can be clearly
shown that with PLL dynamics included, for the critical low-
frequency oscillation mode, Model 3 matches better to Model
1 compared to Model 2.

B. Comparison of Time-domain Simulation

Time-domain simulation comparison is also conducted for
the three models. The small disturbance responses of the
systems can be predicted accurately by eigenvalue analysis.
In this subsection, a large disturbance (line tripping) is used
to initiate dynamic responses.

Line tripping is reflected by a change of Xg . The original
Xg is set to 0.6 pu with the assumption of two parallel
transmission lines in place. At t = 1 s, one of the lines is
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Xg = 0.75 pu.
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Fig. 13. Comparison of Models 3 and 1 on the effect of SCR. P = 1 pu.

tripped. The resulting Xg is 0.75 pu. Simulation studies for
all three models are conducted. For Model 2, the time constant
τ is adjusted to reflect the system strength change. Before 1
second, τ is 0.03 s. After 1 second, τ is 0.0375 s. For Model
3, τ is 0.017 s and keeps intact. The simulation results are
presented in Fig. 14.

The time-domain simulation results indicate again that
Model 3 matches Model 1 much better.
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Fig. 14. Comparison of large disturbance responses of the three models.

V. LINEAR MODEL DERIVATION

In this section, block diagram-based linear system analysis
will be carried out to find the low-frequency oscillation mech-
anism. In the previous section, a numerical method is used
for eigenvalue analysis. To obtain insights, we further carried
out linear model derivation. The linear model for Model 2 can
be found in [13]. The derivation is repeated in this paper for
comparison.

A. Model 2

We will first find the relationship between the PCC voltage
VPCC and the currents id and iq in the converter dq frame.
Since the d-axis is aligned with the PCC voltage, therefore
vd = VPCC and vq = 0.

In the converter dq-reference frame, the PCC voltage, cur-
rent and grid voltage have the following relationship:

vd + jvq = (Rg + jXg)(id + jiq) + V̄g (5)

Suppose that the grid voltage’s phase angle is −δg relative
to the PCC voltage. Then the above relationship becomes:

vd = Rgid −Xgiq + Vg cos δg,

0 = vq = Rgiq +Xgid − Vg sin δg.
(6)

Assuming that δg is within the range of {−π2 ,
π
2 }, then

Vg cos δg =
√
V 2
g − (Vg sin δg)2 =

√
V 2
g − (Rgiq +Xgid)2.

(7)
Combining (7) and (6), we have:

VPCC = Rgid −Xgiq +
√
V 2
g − (Rgiq +Xgid)2. (8)

Linearizing (8) with Rg ignored leads to:

∆VPCC = ∆vd = −Xg∆iq −
Xg√(
Vg
Xgid

)2

− 1︸ ︷︷ ︸
c

∆id.

(9)

Note that Vg/Xg is the short circuit current isc. The above
equation shows that the PCC voltage will decrease when the
output dq-axis currents from the converter increase. Further, if

the d-axis current increases, or the real power output increases,
the absolute value of the coefficient of ∆id or c will increase.

The real power injected to the grid at the PCC bus is
expressed as follows.

P = VPCCid =⇒ ∆P = id∆VPCC + VPCC∆id (10)

The linear system model is shown in Fig. 15 by combining
(10), (9), and the vector control blocks.

Diq
*

Did
* Did

Kpp+Kip/s
+DP* -

-DV*

DVPCC
+

Kpv+Kiv/s

1

1+ts

Diq1

1+ts
-Xg

DVPCC+

+
-c

VPCC

-

id

Fig. 15. Block diagrams of the linearized system (Model 2).

B. Model 3

With the effect of PLL dynamics, the PCC voltage phasor
V̄PCC is related to not only id, iq , but also the PLL output
∆θ, as shown in (11).

V̄PCC = VPCCe
jδPCC = V̄g + (Rg + jXg)(id + jiq)e

jδ (11)

where δPCC = ∆θPCC and δ = ∆θ.
Starting from the PCC voltage phasor expression in (11),

the linearized expression will be derived.

∆V̄PCC = ∆(VPCCe
jδPCC)

= ejδPCC∆VPCC + jVPCCe
jδPCC∆δPCC.

(12)

Ignoring Rg and assuming the grid voltage is constant:

∆V̄PCC = Xge
jδ [−(id + jiq)∆δ + j∆id −∆iq] . (13)

Comparing the right sides of (12) and (13), and assuming
that δPCC ≈ δ, we have:

∆VPCC = −Xgid∆δ −Xg∆iq, (14)

∆δPCC = −Xgiq
VPCC

∆δ +
Xg

VPCC
∆id. (15)

The linearized system block diagram of Model 3 is now
derived and presented in Fig. 16.

C. Comparison of Model 2 and Model 3

Denote GPLL as the transfer function from ∆δPCC to ∆δ.
From Fig. 16, we find that

∆VPCC =
GPLL

1 +
Xgiq
VPCC

GPLL

Xg

VPCC
∆id −Xg∆iq. (16)

Assuming that ∆δPCC = ∆δ or GPLL = 1 by ignoring the
PLL dynamics, then

∆VPCC =
Xg

VPCC +Xgiq
∆id −Xg∆iq. (17)

Substituting VPCC by (8), we find

∆VPCC = −c∆id −Xg∆iq. (18)
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Fig. 16. Block diagrams of the linearized system (Model 3).

(18) is the same as (9). Thus Model 2 and Model 3 are
equivalent if PLL dynamic is ignored. To better examine the
effect of PLL dynamics, the block diagram in Fig. 16 will be
aggregated to have six series connected blocks if the loop is
broken at the point marked as X.

For Block 3, the feedforward gain from the input to the
output is 1. The feedback loop gain is −XgG2. Considering
the reference signal ∆V ∗ as a disturbance and the feedback
loop is a positive feedback, then the transfer function from the
input to the output should be

GBlock3 =
Feedforward gain

1− Loopgain
=

1

1 +XgG2
(19)
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Fig. 17. The open-loop system of Model 3.

D. Mechanism of Low-Frequency Oscillations

Using the open-loop transfer function in Fig. 17, we are able
to investigate the mechanism of low-frequency oscillations
thoroughly.

The open-loop transfer function is as follows.

GOL = − (Xgid)
2

VPCC

G1

1 + VPCCG1︸ ︷︷ ︸
Block 1

GPLL

1 +
Xgiq
VPCC

GPLL︸ ︷︷ ︸
Block 2

1

1 +XgG2︸ ︷︷ ︸
Block 3

(20)
where

G1 =

(
Kpp +

Kip

s

)
1

1 + τs

G2 =

(
Kpv +

Kiv

s

)
1

1 + τs

GPLL =
KpPLLs+KiPLL

s2 +KpPLLs+KiPLL

a) Effect of PLL Parameters: Eigenvalue Analysis Versus
Root-Locus Method: The effect of PLL parameters is first
investigated by examining the eigenvalues based on the linear
system shown in Fig. 16 (with the loop closed) and the
eigenvalues based on Model 1.

The impact of PLL’s proportional gain on the system
eigenvalues is shown in Fig. 18. The left column presents the
results based on Model 1 while the right column presents the
results based on Model 3. It can be seen that both the detailed
model and the simplified model show that higher bandwidth
of PLL makes the system more stable.

It can be seen that the simplified model gives comparable
or more conservative estimation on the system oscillations.
For example, when SCR is at 1.3 and the gain of PLL is
reaching 100, Model 1 shows the pair of eigenvalues are at
−10 ± j16 while Model 3 shows the pair of the eigenvalues
are at −5± j20.

A further comparison is conducted for SCR at 1. The PLL’s
proportional gain starts from 0.01. Here we set KiPLL =
100KpPLL to follow the PLL parameter setting of the 20 Hz
bandwidth presented in Table III.

It can be seen from Fig. 19 that for a wide range of PLL
bandwidths, the simplified model and the detailed model show
similar dynamic responses for the critical mode. Both systems
show that when the proportional gain is less than 50, the
system is unstable. Therefore, the proposed simplified model
(Model 3) is suitable to capture the essential dynamics related
to wind with weak grid interconnection and the impact of PLL.

Although Fig. 19 shows that when the gain becomes very
small, reducing the gain may help system stability, we have
to consider those scenarios are not realistic. In real-world
applications, PLL bandwidth is usually in a certain range (10
Hz ∼ 100 Hz). For example, for FACTS applications [21],
the proportional gain is 100 and the integrator’s gain is 2000
based on per unit inputs. The bandwidth is approximately
16 Hz based on the closed-loop system Bode plot. In [22],
the bandwidth of a PLL is 100 Hz and the parameters are
Kp = 2.62 and Ki = 1650 based on 120 V voltage inputs. In
the per unit scale, the two parameters are 445 and 28, 000. In
[19], the gains are Kp = 50.3, Ki = 5030 based on per unit
inputs. The resulting PLL bandwidth is approximately 20 Hz.

In general, in the range of 10 Hz to 100 Hz PLL bandwidth,
the system is more stable with higher PLL bandwidth. Time-
domain simulation is carried out using Model 1 to examine
the effect of PLLs. The dynamic responses are shown in Fig.
20. Note that the resistance of the grid Rg is no longer ignored
in the validation process (Rg = 0.01 pu). It can be seen that
when the PLL bandwidth is 20 Hz, a 4 Hz oscillation becomes
undamped and the system loses stability. On the other hand,
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when the PLL bandwidth is 70 Hz, the system is stable and
there is no oscillation.

We next use Root-locus Method to conduct stability anal-

ysis. The root loci based on GOL is shown in Fig. 21 (SCR
=1, P = 0.8). Stability or instability of the closed-loop system
can be identified by checking the gain required when the loci
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Fig. 20. Dynamic response of P , Q and VPCC of Model 1 subject to 0.01
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pass the imaginary axis. When the loop is closed, the gain
is 1. Hence, if the gain from the root loci is less than 1,
then the closed-loop system is unstable. The zoom-in figure
in Fig. 21 gives the gains. When PLL’s bandwidth is 70 Hz,
the gain is 1.27, which indicates the closed-loop system is
stable. When PLL’s bandwidth is 20 Hz or 8 Hz, the gains are
less than 1, which indicates instability. For a transfer function
without considering PLL or PLL’s bandwidth is infinity and
GPLL = 1, the gain is 1.28 and the system is stable.
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Fig. 21. Root loci based on GOL. System parameters: Xg = 1, P = 0.8.

Using the block diagram approach, we can clearly identify

the zeros and poles of each block and understand the mech-
anism of stability. Fig. 22 shows the root loci for the open-
loop transfer function with PLL bandwidth at 20 Hz. As a
comparison, the root loci related to PLL bandwidth at 8 Hz are
also shown as dotted lines. We may see that for the two transfer
functions with different PLL bandwidths, the poles related to
Block 1 (power control and current tracking) and Block 3
(voltage control and current tracking) are the same. The pair
of complex conjugate poles of Block 2 move towards the real
axis and the imaginary axis when the PLL bandwidth changes
from 20 Hz to 8 Hz. This indicates a reduced bandwidth for
Block 2. In addition, the moving direction of this pair of poles
changes from toward the LHP to towards the RHP.

Consider the case when PLL bandwidth is 20 Hz (solid
line), Block 1 has a pair of complex conjugate poles −41.18±
j25.64 and a zero −100. Block 2 has a pair of poles
−15.0900± j52.8232, and a zero −KiPLL

KpPLL
= −100. Block 3

has poles −36.76+j±10.91, a zero at the origin point 0+j0,
and another zero at − 1

τ = −58.82.
Two pair of the poles will be attracted to the three zeros

(−100,−100,−58.82) and −∞. The rest pair of the poles
will be attracted to the zero at the origin (0, 0) and +∞.
Therefore, as long as the open-loop system gain is overly large,
the closed-loop system will prone to instability due a pair of
complex conjugate open-loop poles moving to the RHP.

Fig. 22 clearly shows the effect of PLL dynamics on weak
grid stability. A slower PLL makes the system more prone to
instability.
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Fig. 22. Root loci based on GOL. System parameters: Xg = 1, P = 0.8.
PLL bandwidth: 20 Hz (solid line), 8 Hz (dotted line).

b) Effect of Power Level: The block diagrams can clearly
show the effect on open-loop poles and zeros due to power
transfer increase. Note only Block 2’s poles will be influenced
by the power transfer level. The other two blocks have their
poles and zeros intact with a varying power transfer level.

Consider the extreme case when the power transfer level is
1 pu and the SCR is 1 (Xg = 1 pu). Given the grid voltage
and the PCC voltage both at 1 pu, this power transfer level
is at the steady-state limit. Block 2’s poles for P = 0.99 and
P = 1.0 are listed in Table V.

It can be seen that the two complex conjugate poles −3.55±
j26 located in the LHP disappear, while two poles at (0, 0)
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TABLE V
BLOCK 2’S POLES AND ZEROS

P = 0.99 P = 1.0
Poles −25.15± j66.31 −25.15± j66.31
Poles −3.55± j26.4 0, 0
Zeros −25.15± j66.31 −25.15± j66.31
Zeros −100 −100

appear when the power transfer reaches its stead-state limit.
Indeed, when P = 1 for Xg = 1, the q-axis current iq = −1.
The aforementioned statement is based on (8)( VPCC = Rgid−
Xgiq +

√
V 2
g − (Rgiq +Xgid)2 ). Assuming that the grid

resistance is 0, then the PCC voltage can be expressed as
follows.

VPCC = −Xgiq +
√
V 2
g − (Xgid)2. (21)

Note that P = VPCCid, hence when P = 1 and VPCC is fixed
at 1 pu, id is 1 pu. If the grid voltage Vg is assumed to be 1
pu, the second term of the right side of (21) is 0. Therefore,
when Xg = 1, iq is indeed −1.

Examining the block diagram in Fig. 16, the entire Block 3
becomes

(
KpPLL + KiPLL

s

)
1
s . This is why two poles appear

at the origin.
When the power transfer level has a slight increase toward

the steady-state limit, the block related to PLL (Block 2) will
see a pair of complex conjugate poles in LHP disappearing,
while a pair of poles appearing at the origin point. This pair
of poles cancels one zero at the origin introduced by Block
3, resulting in an unstable closed-loop system (shown in Fig.
23). Should the PLL dynamics be ignored, we will not be able
to see any effect of this dramatic change on open-loop system
poles and zeros due to power transfer change.
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Fig. 23. Effect of power transfer level reaching steady-state limit on GOL

poles and zeros. PLL bandwidth: 20 Hz.

c) Effect of Voltage Controller Parameters: When the
voltage controller’s parameters increase, Block 3’s poles’
position will move to LHP and the gain of Block 3 will
be reduced. The closed-loop system will have more stability
margin. The root loci for two cases are shown in Fig. 24. It can
be seen that increasing the gains of the voltage controller can
improve the system stability. This observation corroborates the
remarks in [2] and [3] that a faster voltage controller is better
for stability.
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Fig. 24. Effect of voltage controller parameters on open-loop system poles
and stability margin.

d) Remarks:

• It can be clearly seen that the power transfer level
reflected by id, PCC voltage setting VPCC, and grid
reactance Xg influence the system stability through the
open-loop transfer function’s gain (Xgid)2

VPCC
. High power

transfer, low system strength and low PCC voltage setting
make the open-loop transfer function gain larger and
the closed-loop system more prone to oscillations and/or
instability. The two factors, high power transfer and low
SCR, have been mentioned in the literature, e.g., [5], [13].
Low voltage is another factor that induces oscillations.
Thus, low voltage ride through [6] could also be an issue
related to oscillations.

• The proportional and integral unit gains of the power
controller, voltage controller, as well as the time constant
of the current tracking change the position of poles and
zeros, thus lead to effect on stability or instability. For
example, the parameters of the voltage controller influ-
ence stability [2], [6], [13]. This effect is demonstrated
in Fig. 24.

• Higher PLL bandwidth makes the system more stable.
There are practical limitations posed for PLL gains and
bandwidth. A few examples are given in the following to
illustrate the limitations. Due to the noise and harmonics
in measured signals, low-pass filters may be included in
PLL [21]. For example, both ac and dc voltage filtering
is employed to eliminate harmonics in PLL for a 2
MW Type-4 wind in [2]. The bandwidth of PLL will be
limited by the low-pass filter. In addition, PLL design
may consider compensators to deal with unbalance in
voltage. For example, the design of PLL presented in
Chapter 8 of [17] aims to provide filtering to the 120
Hz harmonics observed in the dq frame due to negative
sequence voltage. The PLL’s bandwidth thus is less than
120 Hz. In the example provided in Chapter 8 [17], the
bandwidth of the PLL is about 30 Hz. This issue is
particularly relevant for Type-4 wind where Low Voltage
Ride Through (LVRT) is a requirement.
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VI. CONCLUSION

In this article, two simplified models for Type-4 wind with
weak grid interconnection are examined and compared with
a detailed model. Using the simplified model, mechanism
of low-frequency oscillations is clearly explained. The root
causes related to the critical mode are identified as weak grid,
high wind power export, low voltage and low PLL bandwidth.
The proposed model can accurately identify the critical mode
related to the low-frequency oscillations and predict stability
or instability.
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