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Abstract— Phasor measurement units (PMUs) can make state
estimation more accurate by providing synchronized voltage
phasor and current phasor measurements. Optimal PMU place-
ment (OPP) minimizes the number of PMUs required for the
system to be completely observable. This paper presents a
DC state estimation model using mixed integer semidefinite
programming (MISDP) approach for the OPP problem. A
comparison between MISDP and mixed integer linear program-
ming (MILP) is conducted. Power flow measurements, injec-
tion measurements, limited communication facility, and single
PMU failure are studied for each approach. A formulation
for MISDP-based PMU placement considering a single PMU
failure is proposed. The advantages and disadvantages of each
formulation are discussed.

Index Terms— Mixed integer linear programming, mixed
integer semidefinite programming, optimal PMU placement

I. INTRODUCTION
Power system security needs to have a real-time monitor

for situation awareness of the operating conditions of the
system. In a control center, the state estimator deals with
the measurements received from the remote terminal units
(RTUs) at the substations and gives the best system state
variables (voltage phasor at each bus). Those measurements
include bus voltages, branch currents, real and reactive power
flows, and power injections. Recently, phasor measurement
units (PMUs) with time tags from global positioning system
(GPS) can provide synchronized phasor measurements of
voltages and currents [1], [2]. PMUs provide better situation
awareness due to their much faster sampling rate (30 ∼ 120
Hz) [3]. When a PMU is placed at one bus, it can measure
the voltage phasor of the bus and current phasors of all lines
connected to that bus making the system observable [4].
However, installing PMUs at every bus is expensive. Thus,
the problem that needs to be addressed is to find the optimal
PMU placement (OPP) that can make the system observable
using PMUs at certain buses.

In the literature, optimal PMU placement is solved using
two techniques which are heuristic-based and mathemati-
cal programming-based. Mathematical programming-based
methods are developed with two main formulations: MILP-
based and nonlinear programming-based. MILP algorithm

to solve the OPP problem is proposed in [2], [4], while
nonlinear programming algorithm is presented in [5], [6]. In
[7], a comparison between MILP and nonlinear programming
is conducted. Another effective mathematical programming-
based method to solve the OPP problem is mixed integer
semidefinite programming (MISDP) subjected to linear ma-
trix inequality (LMI). This method is based on numerical
observability, whereas most of the other methods are based
on topological observability which may not ensure numerical
observability to execute state estimation successfully [9].
MISDP based on Jacobian matrix of AC state estimation
model is proposed in [8], [9].

In this paper, the optimal PMU placement is solved with a
constant Jacobian matrix of DC state estimation model using
mixed integer semidefinite programming (MISDP) approach.
A comparison between this approach and mixed integer
linear programming (MILP) is conducted. Several cases in-
cluding power flow measurements, injection measurements,
limited communication facility, and single PMU failure are
studied for each formulation. A new MISDP formulation
for a single PMU failure is proposed. The advantages and
disadvantages are discussed for each method.

The remaining sections are organized as follows. Section
II and Section III explain the measurement model and the
MILP and MISDP OPP formulations. Section IV investigates
the aforementioned four case studies. Section V and Section
VI are OPP problem simulation results and conclusion.

II. MEASUREMENT MODEL

Consider the π-model of Bus i and Bus j where a single
PMU is installed at Bus i as shown in Fig. 1. The voltage
phasor of Bus i is Ṽi = Vi∠θi, and the current phasor of
Branch i− j is Ĩij = Iij∠δij . The rectangular forms of the
voltage phasor of Bus i and the current phasor of Branch
i − j are Ṽi = Vi cos θi + jVi sin θi = Ei + jFi and Ĩij =
Iij cos δij + jIij sin δij = Iij,real + jIij,imag, respectively.
The series admittance of Branch i − j is yij = gij + jbij ,
and the shunt admittance of Bus i is ysi = gsi + jbsi. Then
the real and reactive power flow measurements from Bus i
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Fig. 1. π-model of Bus i and Bus j

to Bus j and power injection measurements at Bus i can be
expressed as follows [10].

Pmeas
ij =(E2

i + F 2
i )(gsi + gij) + Ei(−gijEj + bijFj)

− Fi(bijEj + gijFj) + ePmeas
ij

(1)

Qmeas
ij =− (E2

i + F 2
i )(bsi + bij) + Ei(bijEj + gijFj)

+ Fi(−gijEj + bijFj) + eQmeas
ij

(2)

Pmeas
i =(E2

i + F 2
i )

∑
j∈Sadi

(gsi + gij) + Ei

∑
j∈Sadi

(−gijEj

+ bijFj)− Fi

∑
j∈Sadi

(bijEj + gijFj) + ePmeas
i

(3)

Qmeas
i =− (E2

i + F 2
i )

∑
j∈Sadi

(bsi + bij) + Ei

∑
j∈Sadi

(bijEj

+ gijFj) + Fi

∑
j∈Sadi

(−gijEj + bijFj) + eQmeas
i

(4)

where Sadi is the set of buses adjacent to Bus i.
The real and imaginary parts of current phasor measure-

ment (measured by PMU) from Bus i to Bus j will be as
follows [10], [11].

Imeas
ij,real = (gsi+gij)Ei−(bsi+bij)Fi−(gijEj−bijFj)+eImeas

ij,real

(5)
Imeas
ij,imag = (bsi+bij)Ei+(gsi+gij)Fi−(bijEj+gijFj)+eImeas

ij,imag

(6)
The real and imaginary parts of voltage phasor measure-

ment (measured by PMU) at Bus i will be as follows [10],
[11].

Emeas
i = Ei + eEmeas

i
(7)

Fmeas
i = Fi + eFmeas

i
(8)

The DC measurement model is assumed where Ṽi = 1∠0◦

p.u. is the voltage phasor. The branch susceptances will
be obtained from MATLAB-based software package MAT-
POWER, and all shunt elements and branch conductances
will be neglected.

Then consider the measurement model of a DC power
system state estimation as the following:
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Fig. 2. IEEE 14-bus system

z = Hx+ e (9)

where z is the measurement vector, x is the state vector,
H is the constant Jacobian matrix, and e is the error vector.

The linear weighted least squares (WLS) state estimation
will be as the following [10]:

Gx̂ = HTR−1z (10)

where G = HTR−1H is the gain matrix, x̂ is the
estimated x, and R is the diagonal covariance matrix.

III. OPTIMAL PMU PLACEMENT FORMULATIONS

A. Mixed Integer Linear Programming
The power system state estimation investigated in this

paper is a DC power flow based linear state estimation.
The states are the voltage phase angle (θi for Bus i) of
every bus in the power grid. The measurements are assumed
to come from PMUs, which include phase angle of Bus i
and the power flow measurements from Bus i to adjacent
buses (j ∈ adi, where adi is the buses adjacent to Bus i).
Therefore, if θi is measured by the PMU, then θj can also
be found since Pij is measurable (Pij =

1
Xij

(θi− θj) where
Xij is the reactance of the line). Thus, with a PMU installed
at Bus i, Bus i and all its adjacent buses are observable.

Bus i is observable as long as there is at least one PMU
installed at Bus i or at its adjacent buses. This requirement
can be expressed by an inequality constraint:

fi(x) = xi +
∑
j∈adi

xj ≥ 1 (11)

where xj is a binary variable to indicate if there is a PMU
at Bus j (xj = 1) or not (xj = 0), and fi(x) is introduced
as the observability function for Bus i.

For the IEEE 14-bus system as shown in Fig. 2, the OPP
formulation can be expressed as follows.

min
x

14∑
k=1

xk

subject to: fi(x) ≥ 1

xi ∈ {0, 1}, i = 1, 2, · · · 14.



where

fi(x) =



f1 = x1 + x2 + x5 ≥ 1

f2 = x1 + x2 + x3 + x4 + x5 ≥ 1

f3 = x2 + x3 + x4 ≥ 1

f4 = x2 + x3 + x4 + x5 + x7 + x9 ≥ 1

f5 = x1 + x2 + x4 + x5 + x6 ≥ 1

f6 = x5 + x6 + x11 + x12 + x13 ≥ 1

f7 = x4 + x7 + x8 + x9 ≥ 1

f8 = x7 + x8 ≥ 1

f9 = x4 + x7 + x9 + x10 + x14 ≥ 1

f10 = x9 + x10 + x11 ≥ 1

f11 = x6 + x10 + x11 ≥ 1

f12 = x6 + x12 + x13 ≥ 1

f13 = x6 + x12 + x13 + x14 ≥ 1

f14 = x9 + x13 + x14 ≥ 1

The problem is solved using the mixed integer linear
programming by MATLAB and intlinprog function, and
the optimal PMU placement will be on buses 2, 6, 7, and 9.

The generalized mixed integer linear programming formu-
lation is expressed as follows [4].

min
x

N∑
k=1

wk xk (12a)

subject to: Ax ≥ B (12b)
xi ∈ {0, 1}, i = 1, · · · , N (12c)

where xi notates if Bus i has a PMU installed (xi = 1) or
not (xi = 0), and the objective function is the minimization
of the number of PMUs to be installed. The wk is the
PMU installation cost. Note that all PMUs have the same
installation cost (wi = 1) which makes the minimization of
the PMU installation cost is equivalent to the minimization
of the number of PMUs. The A matrix’s element and B
matrix are defined as follows.

a(i, j) =


1, if Bus i and Bus j are connected
1, i = j

0. if Bus i and Bus j are not connected

B =
[
1 1 · · · 1

]T
B. Mixed Integer Semidefinite Programming

In addition to the mixed integer linear programming,
optimal PMU placement can be formulated as mixed inte-
ger semidefinite programming (MISDP) subjected to linear
matrix inequality (LMI) [8]. MISDP is based on numerical
observability, while most of OPP methods are based on
topological observability which may not ensure numerical
observability in some cases to execute state estimation suc-
cessfully [9]. Numerical observability in the power system
can be achieved when the Jacobian matrix has a full rank,
whereas the topological observability can be obtained when
the formed spanning tree has a full rank [9], [10]. Numerical

observability (MISDP-based) guarantees topological observ-
ability (MILP-based) [9], and they are equivalent in case of
the linearized DC measurement model where bus voltages
and line reactances are assumed to be 1 p.u. since topological
observability is not based on branch parameters [10].

Mixed integer semidefinite programming considering the
OPP problem can be formulated as follows [9].

min
x

N∑
i=1

wi xi (13a)

subject to: G(x) = G0 +

N∑
i=1

xiGi � 0 (13b)

xi ∈ {0, 1}, i = 1, · · · , N (13c)

where G(x) is a full rank matrix, G(x) � 0 is the
positive definite constraint that ensures the required complete
numerical observability, G0 = HT

0 R
−1
0 H0 is the gain matrix

for the exiting conventional and injection measurements in
the power system, and Gi = HT

i R
−1
i Hi is the gain matrix

for the voltage phasor and current phasors obtained by the
PMU at Bus i. This formulation can be employed to solve
DC and AC state estimation models. In this paper, the DC
state estimation model is assumed.

To explain the above formulation, the mixed integer
semidefinite programming problem is solved for IEEE 14-
bus system (Fig. 2) assuming DC state estimation model, and
it is compared with the solution of the mixed integer linear
programming. Based on IEEE 14-bus system, the mixed
integer semidefinite programming will be as the following:

min
x

14∑
i=1

wi xi

subject to: G(x) = G0 +

14∑
i=1

xiGi � 0

xi ∈ {0, 1}, i = 1, 2, · · · , 14
As mentioned above, the DC measurement model is used

where the voltage phasor is assumed to be 1 p.u., and
all branch susceptances are provided from MATLAB-based
software package MATPOWER. All shunt parameters and
branch conductances are neglected, and unity power factor
is assumed (Qmeas

ij = 0). Thus, the power flow measurement
is Pmeas

ij = Imeas
ij . Then the Jacobian matrix H0 is zero since

it is assumed that there is no flow or injection measurements,
and Hi can be found as follows.

For Bus 1: H1 =


F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

Fmeas
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Imeas
1−2 16.9 −16.9 0 0 0 0 0 0 0 0 0 0 0 0

Imeas
1−5 4.5 0 0 0 −4.5 0 0 0 0 0 0 0 0 0


For Bus 2: H2 =



F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

Fmeas
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Imeas
2−1 −16.9 16.9 0 0 0 0 0 0 0 0 0 0 0 0

Imeas
2−3 0 5.1 −5.1 0 0 0 0 0 0 0 0 0 0 0

Imeas
2−4 0 5.7 0 −5.7 0 0 0 0 0 0 0 0 0 0

Imeas
2−5 0 5.8 0 0 −5.8 0 0 0 0 0 0 0 0 0





The gain matrices of buses 1 and 2 are G1 = HT
1 R
−1
1 H1

and G2 = HT
2 R
−1
2 H2, respectively. Then the Jacobian and

gain matrices are obtained for the rest of the system buses.
Note that Fi = F1, F2, · · · , F14 represents the system state
which is the voltage phasor’s angle in this case. Therefore,
Bus i’s voltage phase angle (system state) and the current
flowing on branches connected to that bus can be measured
with a PMU installed at Bus i. This problem is solved using
MATLAB toolbox YALMIP [12] with an outer approxima-
tion solver SCIP [13]. The optimal PMU placement is found
to be on buses 2, 6, 7, and 9. Thus, mixed integer semidefinite
programming is an effective way to solve the optimal PMU
placement problem.

IV. OPTIMAL PMU PLACEMENT CASE STUDIES

A. OPP Formulation with Power Flow Measurements

Let’s assume that there is a power flow meter on Line ij
in the system. When either Bus i’s or Bus j’s state (phase
angle) is known, other bus’s state can be found should the
power flow measurements from Bus i to Bus j are given.

For the MILP formulation, the observability constraints
should be changed considering power flow measurements.
In the absence of the power measurements on lines i–j, the
observability constraints of the two buses will be given by:

fi =

N∑
k=1

Aikxk ≥ 1 (15a)

fj =

N∑
k=1

Ajkxk ≥ 1 (15b)

In the presence of the power measurements on Line k
with Bus i and Bus j as the terminal buses, the above two
constraints will be merged into the following joint constraint
[4]:

fflow,k = fi + fj ≥ 1 (16)

The above constraint means that as long as Bus i or Bus
j is observable, then the other bus is also observable due to
the power flow meter.

Let’s assume that there are power flow measurements
on lines 2-3, 3-4, 6-11, 6-12, and 7-8 in the IEEE 14-bus
system (Fig. 2). Then the joint constraint for power flow
measurements on lines 2-3 and 3-4 is obtained from (16) as
follows.

fflow,2−3,3−4 = f2 + f3 + f4 ≥ 1

= x1 + 3x2 + 3x3 + 3x4 + 2x5 + x7 + x9 ≥ 1

The joint constraint indicates that whenever one of the
buses (2,3,4) is observable, the rest are observable due to
the meters. Thus, we merged the constraints f2, f3, and f4
into one joint constraint fflow,2−3,3−4 to assure a placement
of one PMU for one of those buses or their adjacent buses.
Then the process is repeated to obtain the joint constraints
for power flow measurements on lines 6-11, 6-12, and 7-8.

For the MISDP formulation, the Jacobian matrix H0

will consider the power flow measurements. Suppose that
there are power flow measurements on lines 2-3, 3-4, 6-11,
6-12, and 7-8 in the IEEE 14-bus system (Fig. 2). Then the
Jacobian matrix H0 will be as follows.

H0 =



F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

Pmeas
2−3 0 5.1 −5.1 0 0 0 0 0 0 0 0 0 0 0

Pmeas
3−4 0 0 5.8 −5.8 0 0 0 0 0 0 0 0 0 0

Pmeas
6−11 0 0 0 0 0 5 0 0 0 0 −5 0 0 0

Pmeas
6−12 0 0 0 0 0 3.9 0 0 0 0 0 −3.9 0 0

Pmeas
7−8 0 0 0 0 0 0 5.7 −5.7 0 0 0 0 0 0


From the above formulations, we can see that the MISDP

formulation is simple and easy to formulate in the case
of power flow measurements compared to the MILP for-
mulation. Table I shows that both formulations provide the
optimal PMU placement required for complete observability.

B. OPP Formulation with Injection Measurements

Suppose that Bus ` is connected to buses i, j, and k as
shown in Fig. 3. Then suppose that there is an injection
measurement for Bus `. The power injection of the DC
measurement model is related to the phase angles of all
buses, θi, θj , θk, and θl, as follows.

i

j

l k

Fig. 3. Four-bus system

Pinj,l =
θl − θi
Xli

+
θl − θj
Xlj

+
θl − θk
Xlk

= 0 (17)

With this measurement and with three of the angles given,
the last angle can be found. In other words, the four buses
are all observable should three of them are observable due
to PMU placement and an injection measurement at Bus `.
Note that there is no difference between the zero and nonzero
injection measurements [2].

This statement has been described in the MILP formula-
tion in [4]:

finj,l = fi + fj + fk + fl ≥ 3 (18)

If only one of the observability constraints (fi, fj , fk, or
fl) is zero, the joint constraint (18) is valid. However, there
are two limitations of the joint constraint (18). One of the
limitations is that a redundant observability of some buses
can result in by adding the observability constraints which
may let the joint constraint (18) satisfied with two zero
observability constraints [14]. Another limitation is that this
joint constraint may not provide the optimal solution in the
case of two or more injection measurements with mutual
buses [14]. In [14], a modification has been applied to (18)
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Fig. 4. Six-bus system

to solve these two limitations which results in too many
constraints especially if it is solved for a large system. A six-
bus system as shown in Fig. 4 is used to simply illustrate
the injection measurement problem. Suppose that buses 1
and 3 have an injection measurements. The MILP constraints
which are developed in [14] will be as follows.

finj,1&3 =



f1 + f2 + f3 ≥ 1, f1 + f2 + f4 ≥ 1, f1 + f2 + f6 ≥ 1,

f1 + f3 + f6 ≥ 1, f1 + f4 + f6 ≥ 1, f2 + f3 + f5 ≥ 1,

f2 + f4 + f5 ≥ 1, f2 + f5 + f6 ≥ 1, f3 + f5 + f6 ≥ 1,

f4 + f5 + f6 ≥ 1, f2 + f3 + f6 ≥ 1, f2 + f4 + f6 ≥ 1,

f1 + f2 + f6 ≥ 1, f1 + f5 ≥ 1, f3 + f4 ≥ 1, f2 + f6 ≥ 1.
(19)

In contrast, the mixed integer semidefinite programming
can solve the problem with a compact and simple formu-
lation. The Jacobian matrix H0 will consider the injection
measurements. Let’s assume that buses 1 and 3 have an
injection measurements in the six-bus system (Fig. 4) where
all branch susceptances are assumed to be −1 per unit. Then
the Jacobian matrix H0 will be as follows.

H0 =

[F1 F2 F3 F4 F5 F6

Pmeas
1 3 −1 0 0 −1 −1

Pmeas
3 0 −1 3 −1 0 −1

]
Both MILP and MISDP formulations can provide the

optimal PMU placement by installing only one PMU at
Bus 2. With the help of injection measurements at buses
1 and 3, buses 4 and 6 can be observable. Note that MILP
joint constraint (18) cannot provide this solution; instead, the
constraint (19) is used to improve the redundant observability
and optimality limitations. Thus, MISDP formulation can
solve the injection measurement problem with compact and
simple formulation compared to the MILP formulation.

C. OPP Formulation with Limited Communication Facility

The limited communication facility in the substation can
prevent the PMU installation due to the lack of data links
required to enable the communication between PMUs and
the control center. This problem can affect the installation
cost of the PMU to be much higher [15]. Thus, a high
installation cost wi will be assigned to the bus that has a
limited communication facility for both MILP and MISDP.
Consequently, the high installation cost will exclude the lim-
ited communication facility buses from the optimal set [7].
Let’s assume that there are limited communication facilities
at buses 2 and 9 on the IEEE 14-bus system (Fig. 2). Then
high installation costs (wi = 109) are assigned to buses 2
and 9, whereas installation costs of the other buses are kept
as wi = 1.

D. OPP Formulation with Single PMU Failure

Although PMUs are reliable devices, failure of a single
PMU is possible. Therefore, to protect the system from losing
one PMU and leaving the system unobservable, the optimal
PMU set is divided into two sets which are main set and
backup set. The main set is the set obtained without a PMU
failure, while the backup set is the set that we are going to
obtain. For MILP formulation, every bus in the system is
going to be observed by two PMUs which modify the right
hand side of the inequality constraints to be two instead of
one [16]. Also, the backup set of the MILP formulation can
be obtained by removing xi and xj terms that represent the
main set. The main set of the IEEE 14-bus system (Fig. 2) is
achieved by solving the problem without considering a PMU
failure as in Section III-A. Then the main set for the MILP
is the following: {2, 6, 7, 9}. Therefore, all of the terms x2,
x6, x7, and x9 are removed from the MILP constraints to
obtain the backup set.

On the other hand, the main set of the MISDP is provided
by solving the problem without considering a PMU failure
as in Section III-B. Then the backup set for the MISDP
formulation is going to be obtained as follows.

min
x

N∑
i=1

wi xi (20a)

subject to: G(x) = G0 +

N∑
i=1

xiGi � 0 (20b)

xi = 0,∀i ∈M (20c)
xi ∈ {0, 1}, i = 1, · · · , N (20d)

where M is the main set, and constraint (20c) means
that the PMUs are already installed to the main set buses.
Therefore, the backup set will be generated to solve the
single PMU failure problem.

This will ensure that the same bus will not pick up more
than one time. Thus, the backup set will keep the system
observable when a single PMU failed.

V. OPP PROBLEM SIMULATION RESULTS

DC state estimation model using MISDP is presented for
the OPP problem, and a comparison between MILP and
MISDP is conducted. Power flow measurements, injection
measurements, limited communication facility, and single
PMU failure are formulated for the two approaches. A
new formulation for a single PMU failure using MISDP
is presented. The MILP optimization problem is solved by
MATLAB intlinprog function, and the MISDP optimization
problem is solved using MATLAB toolbox YALMIP [12]
with an outer approximation solver SCIP [13]. DC model is
used for the MISDP formulation with standard deviations of
0.0076, 0.016, and 0.0001 for power flows, injections, and
phasor measurements (voltage and current), respectively. A
standard deviation of 0.00002 is taken for zero injections.
Table I presents the comparison between MISDP and MILP.
From this table, we can see that case 1 compares between



the two formulations without conventional and injection
measurements, while cases 2-5 consider power flow and/or
injection measurements. The number of PMUs in both for-
mulations is reduced in case of power flow or injection
measurements due to the measurement meters. Table II
shows the comparison between the two formulations in case
of limited communication facility and single PMU failure.
Note that the number of PMUs is increased in the limited
communication facility and single PMU failure contingency
cases. Another optimal set is provided as a backup set which
would be very expensive to install. Also, it should be noted
that the MISDP can provide the minimum number of PMUs
as the MILP but at different locations in some cases.

Both MILP and MISDP are effective ways to solve the
OPP problem, and each formulation has its advantages and
disadvantages. The MILP formulation has less computational
time compared to MISDP formulation as shown in Fig. 5. In
the meantime, MISDP CPU time is considered reasonable
since the Jacobian matrix is used. Also, MISDP has less
CPU time when conventional and/or injection measurements
are taken into account. MISDP is more compact and simple
for problem formulation related to power flow and injection
measurements as explained in Section IV. Further, MISDP
can solve DC or AC state estimation models.

TABLE I. COMPARISON RESULTS OF MILP AND MISDP FOR OPP

Case Optimal
Set

Power
Flows

Injections PMU Placement Bus

MILP MISDP
1 4 — — 2,6,7,9 2,6,7,9

2 3 2-3,3-4,6-
11,6-12,7-8

— 2,9,12 5,9,14*

3 3 — 7 2,6,9 2,6,9
4 3 — 8,11,13 2,4,6 1,4,6*

5 2 2-3,3-4,6-
11,6-12,7-8

8,11,13 5,9 5,9

* Although the two formulations give different results, both guarantee observability.

TABLE II. COMPARISON RESULTS FOR OPP CONTINGENCIES

Case
Contingency &

Location
Power
Flows

Injections PMU Placement Bus

MILP MISDP
6 Limited — — 1,3,7,10,13 4,5,7,10,13

7 Communication
at 2,9

2-3,3-4,6-
11,6-12,7-8

8,11,13 5,8,14 5,8,14

8
Single PMU

Failure at
2,6,7,9

— —

2,6,7,9
(Main) +

4,5,8,11,13
(Backup)

2,6,7,9
(Main) +

1,4,8,10,13
(Backup)

9
Single PMU
Failure at 5,9

2-3,3-4,6-
11,6-12,7-8 8,11,13

5,9
(Main) +

2,7,12
(Backup)

5,9
(Main) +

2,4,6
(Backup)

VI. CONCLUSION
DC state estimation model-based MISDP formulation for

the OPP problem is presented for complete observability.
This approach is compared with the MILP formulation.
The MISDP is based on numerical observability which
depends on branch parameters and system state, and it has a
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Fig. 5. MILP and MISDP CPU Time Comparison

compact and simple formulation in case of power flow and
injection measurements compared to the MILP formulation.
Several observability contingencies, which are power flow
measurements, injection measurements, limited communi-
cation facility, and single PMU failure, are discussed for
both approaches. The advantages and disadvantages of each
formulation are presented.
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