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Abstract—The introduction of distributed generators (DG) and
other emerging technologies such as electric vehicle charging
(EV) to distribution networks have influenced the philosophy
of operating the distribution networks. With the presence of
these technologies, the nature of the distribution networks are
changing form being passive networks to active networks and
in order to accommodate these changes, the way of controlling
and operating distribution systems must be reconfigured and
distribution system state estimation based real-time model is
needed for a secure control and protection in distribution systems.
The objective of this paper is to present a comparison between
the branch-current based distribution system state estimation
in polar and rectangular coordinates. Moreover, the inclusion
of the synchronized measurements, obtained from Micro-PMU
is discussed. The methods are conducted on the IEEE-13 bus
distribution test feeder and results are discussed.

Index Terms—State Estimation, Distribution System, Micro-
PMU Measurement, Branch-Current based, weighted least
square.

I. INTRODUCTION

Power systems consist of generation, transmission, and
distribution systems. Operating, controlling and monitoring
the power systems under economical and efficient way, along
with maintaining the system in a secure state play an essential
role in the power system industry. These objectives can be
accomplished by accurately monitoring the system state con-
ditions. A well-known tool for monitoring the power systems
is state estimation (SE). The state estimator computes the best
estimate of the system states based on collected measurements
across the network and provides real-time data for the energy
control centers for the porpuse of controling and monitoring
the network. It is a critical tool for system reliability and for
many operational functions in the power system [1] [2] [3].

Distributed generators and other emerging technologies
such as electric vehicle charging connected to distribution
systems have increased remarkably in the recent years. With
the existance of these new technologies, the power flow
changed form being uni-directional to become bidirectional
flow which makes it difficult to determine the direction of
the flow.Therefore, the nature of the distribution networks are
changing form being passive networks to active networks. In
order to accommodate these changes, the philosophy of oper-
ating and controling distribution systems must be reconfigured

and distribution sytem state estimation based real-time model
is needed for a secure control and protection in distribution
systems [4] [5].

In transmission system, a balanced system is assumed in
most cases. Therefore, a single-phase state estimator is utilized
in transmission system state estimation (TSSE) . However,
distribution networks have unbalanced nature and these fea-
tures have significant impacts on the positive-sequence state
estimator. Thus, the single-phase estimator is not applicable in
the distribution level. Modifications on the algorithms used in
TSSE and switching to a full three-phase representation of the
network model are crucial to have an accurate and practical
distribution system state estimation (DSSE) [4] [6].

Unlike TSSE where bus voltages are state variables, Branch-
current based DSSE is the most common approach tested
on the literature [12]. The method has better performance in
terms of computation time compared to the node-voltage based
method, especially in radial networks. This is mainly because
of the complexity of the Jacobian matrix on the conventional
method which leads to high execution time and more memory
requirement [8].

Pioneer studies on DSSE were done in 1990’s [6]- [10].
Different types of estimator, such as taking node-voltage or
branch-current in both coordinates, polar or rectangular, as
system states, were tested. DSSE methods and formulations
differ from each other based on the measurements types and
the way they are handled [12]. In [9], the authors developed a
three-phase DSSE formulation by adopting the node-voltages
in polar coordinates as state variables. Since the relationship
between the measurements functions and the state variables
are non-linear, except for the voltage magnitude measurement,
an iterative solution procedure must be applied. In [10],
an approximation method was presented by applying phase
transformation and removing the phase angle difference be-
tween phases. The approximation made the Jaocobian matrix
constant and easier to be handled. Node-voltages in rectangular
coordinates as state variables was adopted by [6]. The authors
proposed a three-phase DSSE formulation which transforms
all types of measurements into their equivalent currents. If all
measurements are transformed, and the state variables (node-
voltages) are represented in rectangular form then the Jocobian



matrix are linear and equal to the branch admittance. A three-
phase branch-current based formulation was developed in [8].
State variables are chosen to be branch-currents in rectangular
form. Measurements (power and current) are converted into
their equivalent current measurements which results in having
a constant Jocobian matrix. After estimating the currents,
a forward sweeping procedure is applied to find the bus
voltages. The results were promising and computationally
efficient compared to node-voltages. Branch-currents in polar
form( magnitude and phase angle based method) instead of
rectangular form were also proposed in [11]. The three-phases
are decoupled, and the results show that the computational
speed were improved compared to the coupled three-phases.

Synchronized phasor measurements (PMUs) are widely
used in transmission systems. They have the ability of mea-
suring voltage and current phasors by the use of Global
Positioning System (GPS) [14]. Power Standards Laboratory
have developed Micro-synchrophasors (Micro-PMUs) for dis-
tribution systems [15]. They measure voltage and current
phasors with high-precision. Based on the literature, the
possible applications of Micro-PMUs in distribution systems
are state estimation, fault location, protective relaying, topol-
ogy detection and others [15]. [13] presented an efficient
branch-current based DSSE that can handle traditional, non-
synchronized, measurements and synchronized measurements,
acquired by Micro-PMUs. The proposed method shows that
the inclusion of synchronized phasor measurements improve
the the accuracy of the estimator.

In this paper, we compare the performance of the branch-
current based DSSE in both formulations, polar and rectangu-
lar coordinates. Moreover, the influence of different types of
measurements, traditional and synchrophasor, on the methods
are discussed. Comparisons between the two formulations and
the measurements types in terms of accuracy and computa-
tional time are analyzed and presented.

II. BRANCH-CURRENT BASED DISTRIBUTION SYSTEM
STATE ESTIMATION

The branch-current based three-phase DSSE adopts the
branch current as the system state variables instead of using the
node-voltage. Figure 1 shows a three-phase lines segment. As
it can be seen, the shunt capacitance affects the branch current
flowing into the line. There are three different currents. Hence
the branch currents phasor which are at the sending end Iphl are
selected as the state variables in this formulation. The branch
currents are chosen as the state variables because if they are
determined, all the node voltages can be found. To explain that
based on the direction of Iphl in Fig.1, the following function
can be obtained:VaVb
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Fig. 1: Three-phase lines segment

where, V ph
i and V ph

j are the three-phase node voltages phasors
at the sending and receiving end, respectively, Zph

l is the three-
phase series impedance of the line, containing the self and
mutual impedances, and ph is the phase index (a, b, c). Once
the branch currents are known, we can apply (2) to calculate
all the node voltages.

The formulation of the problem is based on the most
common algorithm weighted least square (WLS). The WLS
estimation mathematically represents the relationship between
system states and measurements [10]. The general model of
SE is expressed as:

z = h(x) + e (3)

where, z is the measurements vector, h(x) is the non-linear
equation vector relating measurements to the system states, x
is the system state variables and e is the measurements error
vector. The WLS state estimator solution is based on solving
the following optimization problem:

min
m

J(x) =

m∑
1

wi(zi − hi(x))2

= [z − h(x)]TW [z − h(x)]

(4)

where W is a diagonal matrix representing the measurements
weights. Equation (4) is solved iteratively using Newton
method. The state variables x are updated at each iteration
xk+1 = xk + ∆x:

G(x)∆x = HTW [z − h(x)] (5)

where, G(x) = (HTWH) is called the gain matrix and H is
the Jacobian matrix of h(x).

The branch-current based DSSE can be expressed in polar
or rectangular coordinates. In the following, both terms will
be discussed in their three-phase representation.

A. Branch-Current DSSE in Rectangular Form

This method adopts the branch current in rectangular
coordinates as the state variables of the system. x vector can
be expressed as:

x =
[
Iph,r1 . . . Iph,rl . . . Iph,rN , Iph,m1 . . . Iph,ml . . . Iph,mN

]T



where,

Iph,rl =

Ia,rl

Ib,rl

Ic,rl

 , Iph,ml =

Ia,ml

Ib,ml

Ic,ml


Iph,rl and Iph,ml represent the real and imaginary parts of

the branch current at branch l, respectively and N represents
the number of branches .

The measurements that are commonly utilized in distribu-
tion networks are adopted in this method. They are tradi-
tional and synchronized measurements. The traditional mea-
surements considered here are power, current magnitude and
voltage magnitude measurements. They are derived as follows:

Power flow Measurements: All power measurements are
converted into their equivalent currents. The real power (Pl)
and and reactive power flow (Ql) of branch l can be converted
into equivalent current using the following equation:

Iphl =

(
P ph
l + jQph

l

V ph,k
i

)∗

= Iph,rl + jIph,ml (6)

where V ph,k
i is the estimated node voltage at the kth iteration.

The reason of converting all power measurements is to have
linear relationships between the equivalent currents and the
state variables as it can be observed from (6).

Current Magnitude Measurement: current magnitude
function can be written as:

|Iphl | =
√

(Iph,rl )2 + (Iph,ml )2 (7)

Voltage Measurement::
Voltage measurements Vm in terms of the state variables Il
can be written as:

|V ph
j | =

∣∣V ph
s −

N∑
l=1

Zph
l Iphl

∣∣ (8)

where V ph
s is the substation voltage.

The power flow measurments are linear with respect to the
state variables resulting in constant terms in the Jacobian
matrix. The current and voltage magnitude functions are non-
linear as presented in (7) and (8). Therefore, they introduce
non-constant terms to the Jacobian matrix. The Jacobian
matrix are constructed by differentiating the measurements
functions with respect to the state variables. The derivation
of the Jacobian matrix entries can be found in [8] and [13].

In case of synchronized measurements, the measurements,
voltage and branch current phasors, have linear relationship
with the system states.

The rectangular formulation is computed with the forward
sweeping method to find the state estimation solution. The
procedure of the algorithm has the following steps: [8]

1) Start by sitting the iteration index k = 0.
2) Initialize the the node voltages V k−1

i .
3) Convert all power measurements to Il,eq using (4).
4) Find the gain matrix G(x).

5) Solve ∆x = (G(x))−1HTW [z − h(x)].
6) After obtaining the branch current estimate, update the

node voltages using the forward sweeping approach.
7) Check for convergence ∆x ≤ ε.
8) If no, update k = k + 1, back to step 3.
9) Else, stop.

B. Branch-Current DSSE in Polar Form

The formulation of the problem adopts the branch current
magnitude Il and phase angle αl as the system state variables.
x vector can be expressed as:

x =
[
αph
1 . . . αph

l . . . αph
N , Iph1 . . . Iphl . . . IphN

]T

Iphl =

IalIbl
Icl

 , αph
l =

αa
l

αa
l

αc
l


The measurements considered here are the same as the ones
in branch-current DSSE in rectangular form. Since the state
variables are the branch current magnitudes and phase angles,
the measurement functions should be expressed in terms of
these variables. In case of traditional measurements, they can
be expressed as follow:

Power flow Measurements:

P ph
l +jQph

l = V ph
i Iphl [cos(δphi −α

ph
l )+j sin(δphi −α

ph
l )] (9)

where, V ph
i is the voltage magnitude at bus i phase ph and

δphi it its phase angle.

Current Magnitude Measurements:

|Iphl |(measured) = |Iphl | (10)

The voltage magnitude measurements are expressed as in (8).
From the above equations, it can be observed that the rela-
tionship between the measurements and the state variables
are non-linear, except for current magnitude measurements.
Therefore, the entries of the Jacobian matrix H have non-
constant terms and an iterative solution procedure must be
applied. The derivation of the Jacobian matrix terms is taken
as in [11].

In case of synchronized measurements, the measurements,
voltage and branch current phasors, are expressed as follow:

Branch Current Phasor Measurements:

Iphl (measured) = Iphl (11)

where Iphl = Iphl ∠αph
l .



1 234

5 6

710

89

Fig. 2: [Modified] IEEE 13-bus Test Feeder. [18]

Voltage Phasor Measurements:

V ph
j = V ph

i −
N∑
l=1

Zph
l Iphl . (12)

From (11), it is obvious that the state variables are directly
measured which results in linear relationship with x. The
voltage phasor measurements add non-constant terms to the
Jacobian matrix as indicated in (12). The terms of the Jacobian
can be found in [13].

The implementation of the WLS algorithm is adopted from
[11] and has the following procedure:

1) Start by sitting the iteration index k = 0.
2) Initialization:

Branch current magnitude and phase angle initialization
plays an important role on the convergence speed of the
method. The backward-forward method is used to obtain
the initial value. The backward approach is used to
obtain the initial value branch current. Then, the forward
approach is used to obtain the node-voltage initial value
based on the branch current calculated in the previous
approach.

3) Find the gain matrix G(x) = HTWH .
4) Solve ∆x = (G(x))−1HTW [z − h(x)].
5) Check for convergence, ∆xk ≤ ε?
6) If no, update the state variables, xk+1 = xk+∆xk, back

to step 3.
7) Else, stop.

III. TESTS AND RESULTS

Case studies have been conducted to perform the compari-
son between the two formulations. The modified IEEE-13 bus
radial distribution test feeder used in [18] is chosen for the
study . Figure 4 shows the one line diagram of the modified
feeder. The feeder is unbalanced which is composed of three-
phase, two-phase and single-phase lines and loads. Due to the
unbalanced features of the test feeder, the three-phase model
of the lines is considered. The distribution feeder branches are

modeled by 3 × 3 impedance matrix containing the self and
mutual impedance of the lines as described in [16].

In order to obtain set of measurements, a load flow calcu-
lation has been carried out using the Matlab code developed
by A. Garces in [17]. The results of the load flow computing
are taken as the true values of the system states. The results
of voltage phasor, current phasor, voltage magnitude, current
magnitude and real and reactive power flow are used as the
bases of the traditional and synchronized measurements. All
the loads are taken as pseudo-measurements in order to make
the system observable.

All measurements are generated by adding a random percent
of error to the true values using (13), where Ztrue is the true
values obtained from the load flow and e is the error vector.
As for the traditional measurements, the following random
percent of error are considered: 2% for voltage magnitude
measurements with a standard deviation σ of 0.0067 and
3% for current magnitude and power flow measurements
with a standard deviation σ of 0.01 is assumed; whereas for
synchronized measurements, 0.5% for the magnitude and 0.01
rad for the angle accuracy are considered as specified in [15].

The pseudo-measurements are assumed to have 30% error
since they are based on historical load data.

Zm = Ztrue + e (13)

The WLS algorithm is implemented and coded in MATLAB
R2017a environment on a system with Intel i7 and 8 GB RAM.
The data for the IEEE-13 feeder are given in [18].

To evaluate the two algorithms, the results in terms of
accuracy and the convergence speed for the methods are
compared and analyzed.

Two cases are considered for the study:
1) Traditional Measurements: real and reactive power flow,

voltage magnitude and current magnitude.
2) Micro-PMU Measurements: voltage phasors and branch

current phasors.
Pseudo-measurements (loads) are used for both cases to

overcome the observability issue. The same measurements
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Fig. 3: Convergence of branch-current DSSE (Avg.)



TABLE I: State variables estimates (Polar formulation)

Branches
True Value Traditional Micro-PMU True Value Traditional Micro-PMU True Value Traditional Micro-PMU

Phase a Phase b Phase c

Mag.(pu) Ang.(rad) Mag.(pu) Ang.(rad) Mag.(pu) Ang.(rad) Mag.(pu) Ang.(rad) Mag.(pu) Ang.(rad) Mag.(pu) Ang.(rad) Mag.(pu) Ang.(rad) Mag.(pu) Ang.(rad) Mag.(pu) Ang.(rad)

1-2 0.034 -0.597 0.043 -0.675 0.043 -0.675 0.026 -2.756 0.034 -2.951 0.034 -2.951 0.026 1.446 0.028 1.442 0.028 1.442

1-3 0 0 0 0 0 0 0.111 -2.551 0.121 -2.543 0.114 -2.549 0.036 0.96 0.028 0.819 0.031 1.019

3-4 0 0 0 0 0 0 0.046 -2.607 0.04 -2.51 0.048 -2.609 0.046 -2.709 0.035 -2.941 0.039 -2.842

1-5 0.189 -0.346 0.194 -0.397 0.191 -0.351 0.090 -2.324 0.099 -2.262 0.096 -2.352 0.215 1.684 0.236 1.59 0.229 1.674

5-6 0.086 -0.0434 0.076 -0.051 0.09 -0.047 0.027 -0.978 0.02 -0.991 0.024 -0.974 0.052 2.014 0.046 2.031 0.053 2.001

5-7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5-8 0.027 -0.652 0.035 -0.547 0.031 -0.624 0 0 0 0 0 0 0.024 2.217 0.034 2.112 0.029 2.203

8-9 0 0 0 0 0 0 0 0 0 0 0 0 0.023 2.204 0.036 2.005 0.027 2.101

9-10 0.027 -0.632 0.033 -0.653 0.03 -0.636 0 0 0 0 0 0 0 0 0 0 0 0

TABLE II: State variables estimates (Rectangular formulation)

Branches
True Value Traditional Micro-PMU True Value Traditional Micro-PMU True Value Traditional Micro-PMU

Phase a Phase b Phase c

Mag.(pu) Ang.(rad) Mag.(pu) Ang.(rad) Mag.(pu) Ang.(rad) Mag.(pu) Ang.(rad) Mag.(pu) Ang.(rad) Mag.(pu) Ang.(rad) Mag.(pu) Ang.(rad) Mag.(pu) Ang.(rad) Mag.(pu) Ang.(rad)

1-2 0.034 -0.597 0.043 -0.675 0.043 -0.675 0.026 -2.756 0.034 -2.951 0.034 -2.951 0.026 1.446 0.028 1.442 0.028 1.442

1-3 0 0 0 0 0 0 0.111 -2.551 0.120 -2.545 0.115 -2.547 0.036 0.961 0.028 0.819 0.031 1.019

3-4 0 0 0 0 0 0 0.046 -2.607 0.04 -2.51 0.048 -2.609 0.046 -2.709 0.035 -2.941 0.039 -2.842

1-5 0.189 -0.346 0.195 -0.395 0.190 -0.353 0.090 -2.324 0.099 -2.262 0.096 -2.352 0.215 1.684 0.236 1.59 0.229 1.674

5-6 0.086 -0.0434 0.076 -0.051 0.09 -0.047 0.027 -0.978 0.021 -0.990 0.024 -0.975 0.052 2.014 0.046 2.031 0.053 2.001

5-7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5-8 0.027 -0.652 0.035 -0.547 0.031 -0.624 0 0 0 0 0 0 0.024 2.217 0.034 2.113 0.028 2.201

8-9 0 0 0 0 0 0 0 0 0 0 0 0 0.023 2.202 0.034 2.006 0.027 2.102

9-10 0.027 -0.632 0.034 -0.653 0.030 -0.636 0 0 0 0 0 0 0 0 0 0 0 0

configurations are considered for both cases. Every case is
tested for number of times and average root mean square error
(RMSE) and computational time are calculated.

As for the estimators results, Table II and ?? present the
two algorithms estimated values of the system state variables
and compare them with the true values obtained from the
load flow calculation. Table II shows the results for branch
current magnitudes and phase angles for the branch-current
DSSE in polar coordinates with traditional and Micro-PMU
measurements. Table ?? presents the results for the branch-
current DSSE in rectangular coordinates. The results are
expressed in polar coordinates to clarify the comparison. The
branch current magnitudes and phase angles results are shown.

As it can be observed from the estimated results on Table
II and ??, both formulations are able to give similar results.
Therefore, the accuracy of the results are the same regardless
of the chosen state variables, polar or rectangular coordinates,
in the estimator. Basically, the results do not rely on the
used state variables in the estimators but on the available
measurements and their types. Moreover, it is obvious to
observe that Micro-PMU Measurements effects on the result
of the estimates. They have effects on both magnitudes and
phase angles.
In addition, Table III present the estimated results accuracy
in terms of RMSE. It can be observed that the accuracy
are the same for both formulations. The error is reduced
with synchrophasors measurements. It can be concluded that
the estimated results are similar in terms of accuracy in the
two algorithms and the use of synchrophasors measurements
improve the accuracy of both the magnitude and the phase
angle.

Fig. 4 shows the rate of the convergence speed for both
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TABLE III: Branch current average RMSE

Formulation Measurement Mag. (%) Ang. (crad)

Polar Traditional 6.6 4.1

Micro-PMU 5.9 3.2

Rectangular Traditional 6.5 4.1

Micro-PMU 5.9 3.19

formulations with the all cases. The convergence tolerance
is 10−3. In the figure, the blue line indicates the results
for the formulation in polar form with Case 1, the red line
represents the same formulation with Case 2, while the black
line represents the formulation in rectangular form with Case
1. The results show that the rectangular branch-current DSSE



have the best performance in terms of convergence speed. It is
the fastest with the use of Micro-PMU measurements because
of the linearity between the measurements and the state
variables which result in a constant Jacobian matrix. Moreover,
the rectangular formulation with traditional measurements has
less iteration numbers and faster convergence compared to
the polar formulation with both traditional and Micro-PMU
measurements.

Moreover, Fig. 5 shows the average computational time. It
can be noticed that the rectangular formulation has the fastest
performance. Both formulations have better execution time in
the presence of Micro-PMU measurements.

IV. CONCLUSION

In this paper, a branch-current based distribution system
state estimation is presented. Both rectangular and polar for-
mulations are conducted and the results are compared in terms
of accuracy and computational time. Furthermore, the use of
synchrophasors measurements (Micro-PMUs) is discussed and
compared with the traditional measurements . The two algo-
rithms are coded and implemented in MATLAB environment.
The results indicates that both formulations have similar accu-
racy regardless of the chosen the state variables. The impacts
on accuracy depend on the available measurements and their
types. Rectangular formulation have the best performance with
less number of iterations. It is computationally more efficient
with the presence of traditional or synchrophasors due to
the linear relationship of power, current phasors and voltage
phasors measurements. In terms of measurements types, the
results show that Micro-PMU measurements impact on both
magnitudes and phase angles of the estimates and they have
the shortest computational time.
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