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Abstract—This paper presents three power grid partitioning
methods, which are classified into two categories: static and
dynamic approaches. In the static approaches, spectral clustering
method based on eigenvectors of the graph Laplacian and
mixed-integer programming (MIP) strategy have been used to
partition a grid. In dynamic approach, slow coherency based
on the eigenvector of inter-area oscillation mode is used for
generator grouping. We show the three methods lead to the same
partitioning results and give the underlying reason.

Index Terms—power system partitioning, spectral clustering,
MIP, generator grouping, slow coherency.

I. INTRODUCTION

Power grid clustering strategies in the literature can be clas-
sified into two categories: static and dynamic. Static approach
concerns only grid topology, connectivity and steady-state
characteristics. For example, in [1], the electrical coupling
strength is used as a coefficient for the analysis of electrical
connection, and the electrical modularity is used to assess the
quality of the partition. The objective of [1] is to identify
boundaries of virtual microgrids in a radial distribution net-
work. Graph Laplacian based on the admittance matrix of a
power grid is used in [2], [3] for grid partitioning. The method
is named as spectral clustering where eigenvectors of the graph
Laplacian will be used for clustering. A tutorial for spectral
clustering algorithm based can be found in [4]. Alternatively,
mixed integer programming (MIP) problem is formulated to
give an optimal partition solution in [5]. The formulation tries
to separate a grid into multiple balancing areas with minimum
load shedding.

The dynamic approach mainly deals with the system dy-
namic matrix. Generators are grouped based on eigenvectors
of the dominant inter-area oscillation modes. This method of
generator clustering is named as “slow coherence” in [6]. The
generators oscillation modes are highly related to the network
topology represented by the admittance matrix (Ybus) and
generator dynamic properties. This fact is indicated intuitively
in [6]. In [7], a quantitative description of the relationship of
inter-area oscillation modes and the eigenvalues of coupling
graph Laplacian dependent on both topology and power trans-
fer pattern is given. Similar findings have been documented in
[8] and [9]. The network Laplacian’s eigenvalues determine the

grid robustness against lower frequency disturbances, which is
revealed in [9].

In this paper, we will conduct the power system partitioning
via both static and dynamic approaches. Three methods will
be used to partition the IEEE 14-bus system into three areas.

Spectral clustering method clusters buses into three areas.
This is a simple and direct way with a given adjacent matrix
and the partition number. The spectral clustering method has
an objective of minimum number of edges cutting.

MIP partitioning method determines which edges to cut
to result in three areas. This method minimizes the total
load shedding. The optimization problem has power flow
equations as constraints. MIP partitioning has to add the
connectivity constraints to guarantee all nodes inside each
area are connected. MIP method is more flexible since we
can customize the constraints for different purposes. e.g., we
can assign the minimum number of nodes for each area and
ensure any branch as a boundary branch between two areas.

Finally, the dynamic eigenvector-based clustering method
(or slow coherence) is used to cluster generators. The pro-
cedure is to build a linear electromechanical (EM) model
to find two dominant oscillatory eigenvalues. Based on the
corresponding eigenvectors, clustering is conducted.

The major contributions of this paper are as follows. De-
tailed explanations on three partition methods are given and
tested on the IEEE 14-bus system. Methodology similarity
of spectral clustering method and slow coherency methods is
identified. Both methods rely on eigenvector-based clustering.
Further, the reason of similarity of the partitioning results
based on spectral clustering and slow coherency is given. Two
static methods, spectral clustering and MIP partitioning, are
also compared. Reason of the similarity of the partitioning
results is given.

This paper is organized as follows. Section II introduces
two static approaches: spectral clustering and MIP partitioning.
Section III gives the generator grouping approach based on
dynamic analysis. IEEE 14-bus system is tested to find the
relationship among three approaches. Section IV concludes
the paper.



II. STATIC APPROACHES

A. Spectral Clustering

In this subsection, the properties of Laplacian’s eigenvalues
and eigenvectors are introduced first. Then the IEEE 14-
bus is tested for three areas clustering via spectral clustering
algorithm.

1) Laplacian of Network: Given a power system network
G = (V,E) with the bus set V and branch set E.

The Graph Laplacians (L) will be built as follows.

L = D −W (1)

where W is the adjacent matrix and D is a diagonal matrix
and its ith diagonal component is notated as di where di =∑
jWij . Fig. 1 shows a 6-node graph. It has only 1 connected

component, which means it is an entire connected graph. We
assume that each item in the adjacent matrix W is defined as

wi,j =

{
1, If i, j are connected.
0, otherwise.

(2)

The Laplacian L is:

L =


2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 3 −1 0 0
0 0 −1 3 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2

 . (3)
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Fig. 1. Connected 6-node graph

2) Eigenvectors Properties: The ith eigenvalue λi and
eigenvectors vi have the following relationship (4):

Lvi = λivi. (4)

In (5), eigenvectors are listed in matrix v by columns. And
(6) gives the corresponding eigenvalues: 0 = λ1 ≤ λ2 ≤ · · · ≤
λ6.

v =


−0.4082 0.4647 −0.1752 −0.7231 0.1724 −0.1845
−0.4082 0.4647 −0.3438 0.6777 0.0764 −0.1845
−0.4082 0.2610 0.5190 0.0454 −0.2488 0.6572
−0.4082 −0.2610 0.5190 0.0454 −0.2488 −0.6572
−0.4082 −0.4647 −0.5575 −0.1022 −0.5119 0.1845
−0.4082 −0.4647 0.0385 0.0568 0.7607 0.1845


(5)

λ =
[
0 0.4384 3 3 3 4.5616

]T
(6)

Starting from the second eigenvector v2, which corresponds
to the smallest non-zero eigenvalue 0.4384, we assume the
element in j-th row i-th column as xi,j .

xi,j =

{
1, If vi,j > 0

−1, If vi,j < 0
(7)

x =
[
x2 x3 x4 x5 x6

]
=


1 −1 −1 1 −1
1 −1 1 1 −1
1 1 1 −1 1
−1 1 1 −1 −1
−1 −1 −1 −1 1
−1 1 1 1 1

 (8)

If we separate this graph into two subareas, then the number
of edges being cut based on ith eigenvalue is Ci, which can
be computed from xi based on L:

Ci =
1

4
xTi Lxi (9)

For example, we can have C2 and C3 as

C2 =
1

4
xT2 Lx2 = 1, Cut Edge 3-4.

C3 =
1

4
xT3 Lx3 = 4, Cut Edges 1-3, 2-3, 4-5, and 5-6.

For the graph in Fig. 1, there is only one zero eigenvalue,
since the number of connected components is 1. Its corre-
sponding eigenvector is a scaled vector 1 where all elements
are the same.
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Fig. 2. 2 connected components 6-node graph

If we disconnect Edge 3-4, shown in Fig. 2, we get
following eigenvalues and eigenvectors.

v =


0.5774 0 0.2895 0 0.7634 0
0.5774 0 0.5164 0 −0.6325 0
0.5774 0 −0.8059 0 −0.1310 0

0 0.5774 0 0.7634 0 0.2895
0 0.5774 0 −0.6325 0 0.5164
0 0.5774 0 −0.1310 0 −0.8059


(10)

λ =
[
0 0 3 3 3 3

]T
(11)

Note that there are 2 zero eigenvalues in this scenario
since there are two connected components in this graph. Also,
the corresponding eigenvectors do not consist of identical
elements. The Laplacian matrix L has the same number of
zero eigenvalues as its connected components.

3) 14-Bus System Partitioning: Based on the properties of
graph Laplacian, we know that the number of zero eigenvalues
representing the number of connected components. Also, we
would like to focus on the small non-zero eigenvalues. The
smaller the eigenvalue, the fewer the edges will be cut for
partitioning. The spectral clustering method is essentially



clustering based on the eigenvectors of smallest non-zero
eigenvalues.

Let us use IEEE 14-bus system for three areas clustering.
Generally, the weak connectivity is due to higher impedance
transmission lines or fewer connections between two subareas.
The admittance matrix Y of a power grid can represent the
bus connectivity. If two buses (i and j) are tightly connected,
then a large magnitude of Yij is expected. If they are loosely
connected, a small magnitude of Yij is expected. If they are
not connected, then the admittance is zero (Yij = 0).

Hence, we build a graph Laplacian based on the Y matrix.
We obtain an adjacent matrix W with its diagonal elements
as 0 and non-diagonal elements as the absolute values from
the Y matrix:

W =


0 |Y1,2| . . . |Y1,n|
|Y2,1| 0 . . . |Y2,n|

...
...

. . .
...

|Yn,1| |Yn,2| . . . 0

 (12)

In (13), we list the first 3 eigenvectors of L. The corre-
sponding eigenvalues are given in (14).

v =



0.2673 0.3301 0.2491 . . .
0.2673 0.3173 0.2284 . . .
0.2673 0.3445 0.2293 . . .
0.2673 0.2328 0.1113 . . .
0.2673 0.2138 0.1641 . . .
0.2673 −0.2467 0.1669 . . .
0.2673 0.1010 −0.3193 . . .
0.2673 0.1627 −0.6350 . . .
0.2673 −0.0323 −0.2546 . . .
0.2673 −0.1052 −0.2377 . . .
0.2673 −0.2263 −0.0586 . . .
0.2673 −0.4447 0.2961 . . .
0.2673 −0.3673 0.1827 . . .
0.2673 −0.2797 −0.1227 . . .



(13)

λ =
[
0 2.1531 2.8225 . . .

]T
(14)
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Fig. 3. New coordinate system based on eigenvectors v2, v3

Based on one eigenvector, we are able to separate a con-
nected graph into two subareas. To generate three partitions,
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Fig. 4. Partitioning of 14-bus network

we need two eigenvectors. In this case, we use the 2nd and
3rd eigenvectors.

Let us take a look at the second column of v. We notice
that the 1st-5th, 7th and 8th elements are positive while the
rest ones are negative. Thus, bus {1−5, 7, 8} are more closely
connected. Similarly, we can conclude that bus {1−6, 12, 13}
are closely connected from the third eigenvector. The first k
smallest eigenvalues can supply us enough clustering informa-
tion if we would like to generate a k-area partitioning. It is
much easier for K-means algorithm to converge with reduced
data, which is in 14× 3 dimension.

The first constant eigenvector is ignored and we map each
row of v2, v3 to a new coordinate system in Fig. 3. Then
K-means clustering or Gaussian elimination can be applied to
partitioning based on the new point set. The partition result is
shown in Fig. 4 based on Fig. 3.

B. MIP Partitioning

In Ref. [5], the splitting strategy is conducted using MIP.
The objective is to minimize the total load shedding under
the splitting constraints, physical constraints, and connectivity
constraints.

1) Objective Function: The objective function is to mini-
mized the total load shedding. The load demand at each bus
is a decision variable.

min
X

Nd∑
i=1

(Dmax
i −Di) (15)

where Nd is the number of buses with demand loads. Dmax
i

denotes the maximum of load demand at bus i, or the load
demand at connected condition. Di denotes the load demand
variable at bus i. The decision variable X is defined as

X = (DNd×1, PNg×1, P
Nr×1

, Tm×1, T
m×1

,

θn×1, xn×Np , ym×1)

where Np, Ng and Nr refer to numbers of areas, generators
and reference buses, respectively. n and m are the total
numbers of buses and branches, respectively. Each variable
vector is listed as follows.



• DNd×1 : The load demand vector.
• PNg×1 : The generator output power vector.
• P

Nr×1 : The integer output power vector of reference
buses for connectivity constraints.

• Tm×1 : The transmission line power vector.
• T

m×1
: The integer transmission line power vector for

connectivity constraints.
• θn×1 : The voltage angle vector for all buses.
• xn×Np : xi,k = 1 means bus i belongs to area k.

Otherwise, xi,k = 0.
• ym×1 : yl = 1 indicates branch l is an internal branch of

one area. Otherwise, yl = 0.
2) Splitting constraints:

Np∑
k=1

xi,k = 1, i ∈ V, k = 1, . . . , Np (16)

xi,k = 1, If the generator on bus i is assigned to area k.
(17)

yl =

Np∑
k=1

xf(l),k · xt(l),k, ∀l ∈ E (18)

Denote V and E as the bus set and branch set. G is the
generator set. (16) is to assign each bus to an area. (17) is
to decide how to distribute the generator buses. e.g., we can
add x2,1 = 1 as an initial constraint to assign bus 2 to area 1.
The relationship between yl and xi,k is written as (18). Take
branch l1,2 and branch l4,7 in Fig. 4 for example. yl1,2 = 1
since bus 1 and bus 2 belong to the same area while yl4,7 = 0
since bus 4 and bus 7 belong to different areas.

3) Power system physical constraints: This part is essen-
tially the constraints of DC optimal power flow (OPF). The
difference is that there are several disconnected subsystems.
We need to describe DC OPF for each subsystems. For each
subsystem, a reference bus should be identified. Also a branch
l is an internal branch if yl = 1, otherwise yl = 0. To accom-
modate that last condition, big-M technique is employed.∑
f(l)→t(l)

Tl−
∑

t(l)→f(l)

Tl = Pf(l) −Df(l), ∀(f(l), t(l)) ∈ E(l)

(19){
θi = 0, i ∈ R
−π ≤ θi ≤ π, i /∈ R

(20)

−Tmax
l yl ≤ Tl ≤ Tmax

l yl, l ∈ E (21)
−M(1− yl) ≤ Tl − bl(θf − θt) ≤M(1− yl), l ∈ E

(22)

Pmin
i ≤ Pi ≤ Pmax

i , i ∈ G (23)

Dmin
i ≤ Di ≤ Dmax

i , i ∈ L (24)

(19) is the power balance constraint for each from bus
(f(l) → t(l) is to indicate the power flow direction). In
(20), we define the bounds of voltage angle: it equals to 0
if it is the reference bus, otherwise belongs to {−π, π}. R is
the reference bus set. Here, each area has one reference bus.
(21),(22) are the transmission line capacity constraint, where

M is a large constant number, bl is the susceptance of branch
l, and θ is the voltage angle. Those constraints mean that for
boundary branches (yl = 0), we don’t need to enforce line flow
equality constraints and limit constraints. When yl = 1, the
line limit constraints are enforced. Otherwise, these constraints
are relaxed. (23) and (24) is to define the upper and lower
bounds of power generations and load demands. L denotes
the load set.

We prefer the generator buses as reference buses (R). In
the 14-bus system, we can perform Kron reduction [10] on
Y bus matrix to get a Y bus matrix with the dimension
of 5 × 5 for generators. Then we apply the same spectral
clustering algorithm on generator grouping, which is similar
to the spectral partitioning approach in Section II. Thus, we
can select one generator bus as the reference bus in each area.
Here, bus 1, 6 and 8 are selected as the reference bus for each
area, respectively.

4) Subgraph connectivity constraints: Constrains (25)-(27)
are to guarantee the connectivity of each area.∑
t(l)→f(l)

Tl −
∑

f(l)→t(l)

Tl + P f(l) − 1 = 0, ∀(f(l), t(l)) ∈ E(l)

(25)

−Myl ≤ Tl ≤Myl, l ∈ E (26){
Pr ≥ 2, r ∈ R
Pi = 0, i /∈ R

(27)

Different from the physical Tl and P , Tl and P serve
as dummy variables (integers). We assume the reference bus
is the power supply in an area, and each bus has a unit
load demand, which is 1. Notice that the dummy power flow
equality constraint (25) is for every bus. P f(l) is required to
be 0 if it is not a reference bus with a power supply in (27).
And P f(l) decides the size of subgraph. Similar to (21), (26)
is to cut off boundary branches.
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Fig. 5. Subgraph connectivity example

Let us take the subgraph in Fig. 5 for example. We assign
bus 1 as the reference bus. In the first scenario, we assume the
branch l1,4 is disconnected. Then the equation (25) for each
bus can be listed as follows.

Bus 1: P 1 − 1 = 0 (28a)

Bus 2: T l(3,2) + T l(4,2)+ P 2 − 1 = 0 (28b)

Bus 3: T l(2,3) + T l(4,3)+ P 3 − 1 = 0 (28c)

Bus 4: T l(2,4) + T l(3,4)+ P 4 − 1 = 0 (28d)

We solve (28a) to find that P 1 = 1. Note P 2 = 0,
P 3 = 0, and P 4 = 0 since Buses 2, 3, 4 are not reference



buses. Further, summing up (28b) to (28d) leads to −3 = 0.
This constraint cannot be satisfied. Therefore, this subgraph is
disconnected.

In the second scenario, we assume the branch l1,4 is
connected. Then the equation (25) for each bus can be listed
as follows.

Bus 1: T l(4,1)+ P 1 − 1 = 0 (29a)

Bus 2: T l(3,2) + T l(4,2)+ P 2 − 1 = 0 (29b)

Bus 3: T l(2,3) + T l(4,3)+ P 3 − 1 = 0 (29c)

Bus 4: T l(1,4) + T l(2,4) + T l(3,4)+ P 4 − 1 = 0 (29d)

Notice that P 1 = P 2 = P 3 = 0. If equations (29a) to
(29d) are satisfied and we may sum them up and find P 4 = 4,
which is the number of total buses in this subgraph. We also
get T l(1,4) = −T l(4,1) = 3, T l(4,2) = −T l(2,4) = 1, T l(4,3) =
−T l(3,4) = 1, and T l(2,3) = −T l(2,3) = 0. All constraints can
be satisfied. Hence this subgraph connectivity is guaranteed.

5) 14-bus System Partition Result: The MIP partitioning on
IEEE 14-bus system is achieved through Gurobi in Python. We
can get the final optimal solution is 72.68 kW. Solving time
is 0.09s. And the network partitioning result is same as Fig.
4. That is due to combining the physical constraints with the
objective function, MIP partitioning method can consider both
minimum edge cuts and tight connection inside each area.

III. DYNAMIC APPROACH

The dynamic approach is via generator slow coherency
grouping algorithm [6]. It is based on interarea oscillation
mode’s eigenvector to identify the coherent generators.

TABLE I
14-BUS SYSTEM GENERATORS PARAMETERS. (IMPEDANCES ARE IN PU.)

MVA x1 ra xd x′
d x′′

d
900 0.2 0 1.8 0.3 0.25
Tdo T ′

do xq x′
q x′′

q Tqo T ′
qo

8 0.03 1.7 0.55 0.24 0.4 0.05
H D
6.5 0

A. Electromechanical Models

In [6], the author presented how to build the classical
electromechanical model. The generator rotor angle δ can be
written as:

Hi

πf0
δ̈i = Pmi − Pei

= Pmi −
|Ei||Vj | sin(δi − θj)

x′di
(30)

where Pmi and Pei is input mechanical power and output
electrical power, respectively. |Ei| is the internal voltage
magnitude of generator i with a transient reactance x′di. Hi is
the machine inertia constant. |Vj | is the terminal bus voltage
of generator i. And θj is the j bus voltage angle, which is
computed by (31).

|Vj | =
√
V 2
j,re + V 2

j,im, θj = tan−1(
Vj,im
Vj,re

) (31)

The dynamic model can be formed as follows.

Mδ̈ = f(δ, V ) (32)
0 = g(δ, V ) (33)

where (32) is in brief of (30). (33) is power flow equations at
each load bus. δ is the rotor angle vector. V is the 2n-vector
of the real and imaginary parts of bus voltages.

We can get deviations of (32) and (33) respecting to an
initial power flow equilibrium (δ0, V0) to obtain a linear
model:

M∆δ̈ =
∂f(δ, V )

∂δ

∣∣∣∣
δ0,V0

+
∂f(δ, V )

∂V

∣∣∣∣
δ0,V0

= K1∆δ +K2∆V

(34a)

0 =
∂g(δ, V )

∂δ

∣∣∣∣
δ0,V0

+
∂g(δ, V )

∂V

∣∣∣∣
δ0,V0

= K3∆δ +K4∆V

(34b)

where K1 ∈ RNg×Ng and K2 ∈ RNg×2Ng consist of the
partial derivatives of power transfer between machines and
their terminal buses. K3 ∈ R2Ng×Ng and K4 ∈ R2Ng×2Ng

are the partial derivatives of power transfer between terminal
buses.

From (34b), we can have:

∆V = −K−14 K3∆δ (35)

Substitute ∆V by (35) in (34a). We can obtain a linearized
electromechanical model.

∆δ̈ = M−1K∆δ (36)

whereM is a diagonal matrix of generator inertias. The entries
of M can be derived from the left hand of (30).

Mii =
Hi

πf0
MVA (37)

where MVA is the base power and Hi is in p.u..

B. Slow coherency identification

In this subsection, we show the clustering based on eigen-
vector of M−1K. We may rewrite the dynamic model using
(36). [

∆δ̇

∆δ̈

]
︸ ︷︷ ︸

ẋ

=

[
0 I

M−1K 0

]
︸ ︷︷ ︸

A

[
∆δ

∆δ̇

]
︸ ︷︷ ︸

x

(38)

We may solve the characteristic equation to find the eigen-
values λ of A. ∣∣∣∣λI − [ 0 I

M−1K 0

]∣∣∣∣ = 0, (39)

which is equivalent to∣∣∣∣ λI −I
−M−1K λI

∣∣∣∣ = |λ2I −M−1K| = 0 (40)

From (40) we can see that λ2 is an eigenvalues of M−1K
if λ is an eigenvalue of A. Hence, eigenvalues of M−1K can



reflect the features of A. With this conclusion, we can have
the eigenvectors of A and M−1K as (41).

Av = λv (41a)

M−1Kvm = λ2vm (41b)

Assume v = [v1 v2]T , where v1, v2 ∈ RNg×1. Ng is
the number of generators. Then rewrite the equation (41a) as
follows.[

0 I
M−1K 0

] [
v1
v2

]
=

[
v2

M−1Kv1

]
= λ

[
v1
v2

]
(42)

Hence, we get

v2 = λv1 (43a)

M−1Kv1 = λv2 (43b)

Comparing with (41b), we find

v1 = vm (44a)
v2 = λvm (44b)

Therefore, the eigenvectors vm of M−1K can be used for
clustering. Also the eigenvalue of M−1K is the square of
A’s eigenvalue.

IEEE 14-bus 5-generator network (Fig. 4) is used to test
slow-coherency grouping algorithm. All the generators share
the same parameters, which are shown in TABLE I. We will
split generators into three groups. Implement the system bus,
line and generator data to Coherency Toolbox of PST [11],
we can get the matrix M−1K by svm_em command.

M−1K =


−14.3974 13.3881 4.5101 3.8267 4.2270

7.3138 −6.8699 −2.2443 −1.9210 −2.1331
4.5899 −4.2043 −1.5305 −1.2073 −1.3413
2.6820 −2.4631 −0.8259 −0.7775 −0.7711
1.3635 −1.2528 −0.4181 −0.3455 −0.4438


The eigenvalues of M−1K matrix are as follows.

λm = [0.0011 − 0.0516 − 0.0805 − 0.1348 − 23.7533]T .
(45)

The corresponding eigenvectors are:

vm =


−0.6852 −0.0962 0.0769 −0.1549 0.8441
−0.4113 −0.2804 0.1721 −0.4803 −0.4293
−0.3477 −0.3318 0.2562 0.8584 −0.2689
−0.3511 0.0225 −0.9100 0.0925 −0.1569
−0.3423 0.8953 0.2658 −0.0009 −0.0796


The eigenvectors indicates the relative motions of the

generators, i.e., sharing the same sign in vm1 represent the
system mode in which all generators move together in the
same direction and proportion. vm2 is to indicate the λ2 =√
λm2 =

√
−0.0516 = ±j0.2272 rad/s interarea mode in

which generator 5 oscillates against the rests. And vm3 is to
indicate the λ3 =

√
λm3 =

√
−0.0805 = ±j0.2837 rad/s

interarea mode in which generator 4 oscillates against the
rests. vm4 and vm5 are for Area 1’s local modes. Gaussian
elimination can be performed on the first three eigenvectors
to identify three generator groups numerically. The generator

grouping result is presented in Fig. 6. We can see it matches
the generator grouping in Fig. 4 as well. Since we assume
all generators sharing the same feature, only the admittance
matrix has the effect on dynamic model’s inter-area modes.
And both spectral clustering and MIP partitioning depend on
admittance to identify the tightly connected buses.
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Fig. 6. IEEE 14-bus system generators grouping

IV. CONCLUSION

In this paper, we give a detailed understanding of power
system partitioning via static and dynamic aspects. We found
that a similar result can be carried out via spectral clustering
and MIP partitioning due to their common motivation. Also,
the similarity of spectral clustering and slow coherency is iden-
tified via the studies on IEEE 14-bus system. The admittance
matrix has a direct effect on eigenvector-based clustering. It
provides insight into the relationship between power system
static structure and generator dynamic model.
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