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Abstract—The objective of this paper is to explore two
engineering applications of convex relaxation of AC OPF: (i) to
conduct economic dispatch at heavy loading conditions; and
(ii) to identify the system’s loading limit. The conventional
AC OPF formulation solved by interior point method has
difficulty to converge when the system is reaching its loading
limit due to the singularity of the Jacobian matrix. Existing
methods to identify loading limits include continuous power
flow (CPF) method. For CPF, the direction of power transfer
has to be identified first. Then, a PV nose is obtained and
the maximum loading level is at the nose point. Using convex
relaxation of alternating current optimal power flow (AC OPF),
we will not encounter singularity issues. In this paper, we
will formulate a semi-definite programming (SDP) relaxation
of AC OPF-based optimization problems to conduct economic
dispatch and loading limit identification. Advantages of SDP
OPF over MATPOWER are demonstrated. Further, loading
limits identified by SDP OPF are compared with those found
using the CPF method of MATPOWER. Our research indicates
that two methods will lead to the same solutions for the tested
systems.

I. INTRODUCTION

This paper exploits an engineering application of convex
relation of AC OPF. The particular relaxation used in this
paper is the SDP relaxation [1], [2]. Conventional AC OPF
is a nonconvex program and is usually solved by the interior-
point method. MATPOWER [3] is one such software package
for AC OPF using interior-point method. The conventional
power flow equations are listed as the equality constraints in
AC OPF. When evoking interior-point method-based solvers,
those power flow equations have to be solved.

For power flow equations, Newton-Raphson method has a
convergence issue when the system loading reaches its limit.
Similarly, when the system is reaching its limit, AC OPF also
has a convergence issue and the interior-point method-based
solver does not give a solution.

An advantage of SDP relaxation is that the power flow
equations are no longer in terms of voltage magnitude
and angles. Instead, power flow equations are linear to the
elements of a positive semi-definite (PSD) matrix. This new
expression makes the convergence issue disappear.
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Thus, we can employ SDP relaxation of AC OPF to iden-
tify loading limit or to find economic dispatch of generators
when the system is close to its loading limit. In addition,
when the system is over its loading limit, SDP relaxation
will indicate that there is no feasible solution.

Using SDP relaxation of AC OPF and second order cone
programming relaxation of AC OPF to identify loading limit
has been addressed in [4], [5].

In this paper, we investigate the two optimization problem
formulation based on SDP OPF to investigate both economic
dispatch under heavy loading and loading limit identification.
Comparison with MATPOWER will be given to demonstrate
the advantages of SDP OPF.

This paper is organized as follows. In Section II, we give
AC OPF formulation in the conventional and SDP relaxation
forms. In Section III, we show the advantage of semi-definite
programming using CVX over nonlinear programming using
MATPOWER in solving optimal power flow problems. In
Section IV, the maximum loading level identification is
carried by SDP OPF and MATPOWER’s runcpf function.
Conclusion of this paper in found in Section V.

II. AC OPF

The objective functions and the constraints of power
system depend on the applications that need to be optimized.
The essential active power objectives and constraints of a
general OPF problem are given in Table I [6].

TABLE I
ESSENTIAL ACTIVE POWER OPF OBJECTIVES AND CONSTRAINTS [6]

Constraints

e Generator output in MW

e Operating limits of MW and MVAr
o MW and MVAr interchanges

Objectives

e Economic dispatch
(minimum cost losses,
MW generation, or
transmission losses)

e Environmental dispatch

e Maximum power transfer




A. Mathematical AC OPF Formulation
AC OPF problem
(nonconvex)

The typical AC OPF formulation is to minimize the
generation cost while considering the system’s physical
operation limits. For a system with n buses, the parameters W= x x
and decision variables are listed as follows.

e Vi = Vi + 7Vt The voltage phasor in rectangular AC OPF problem
coordinates. in SDP form
o Yi; = Gi; + jBy;: The admittance between Bus k and (nonconvex)
Bus j.
e Py and Qy are the active and reactive injected power Dropping the constraint
Rank(W) =1

at Bus k, respectively.
e Pgi and Qg are the active and reactive generated
power at Bus k, respectively. AC OPF problem

e Ppy and Q py, are the active and reactive demand power in SDP form
at Bus k, respectively. (convex)
o Subscripts pax and i, notate maximum and minimum
limits, respectively. Fig. 1. The Convexification Process.

e ay , Bk, and -, are the constant, linear and quadratic

fuel cost coefficients of unit k. ) ) )
imaginary components, respectively.

The conventional AC OPF formulation for minimizing the Vi = ey

. . . k= €key (3a)

generation cost of a system is shown in (1) and (2). T T
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The bus reference angle is set to be 0° by forcing V, to
be 0. This is obtained by the following equations [7].

0 0
N = [0 ekeg] (4a)
Trace{ N;W} =0 (4b)

The convexification of AC OPF form is realized by drop-
ping the rank constraint, Rank(') = 1. The convexification
process is shown in Fig. 1.

B. Mathematical AC OPF Formulation in SDP Form

In this subsection, AC OPF formulation is set to be in the
SDP form [2]. ey, €2, €3, . . ., and e,, are the standard basis
vectors in R™. My, My, Mg, ..., and M,, are the standard In this section, we go through study cases and solve them
basis matrices. k is the bus index. R and < are the real and  using MATPOWER for conventional AC OPF and CVX
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Fig. 2. Three-Bus System Case Study [9]

[8] with the SDPT3 solver for SDP OPF. MATPOWER
solves the original nonlinear programming based AC OPF
constraints in (2). On the other hand, CVX toolbox with
the SDPT3 solver solves the SDP relaxation of AC OPF
constraints in (3). We start with a 3-bus system, then we
conduct 6- and 14- bus systems. We have tested larger scale
systems up to 118-bus system, however, they are not shown
in this paper due to space restrictions.

A. Three-Bus System

This system is adopted from [9]. The system is shown
in Fig. 2. The optimal solution of the system using MAT-
POWER, which applies Interior Point Method in nonlinear
programming, is shown in Table II. CVX optimal solution,
which is based on semidefinite programming, is found in
Table III. We can see that the two solutions match from
Table II and Table III.

TABLE II
THREE-BUS SYSTEM MATPOWER SOLUTION

Bus [V](p.u.) | 0 (degrees) | Pc(MW) | Qg(MVAr)
Bus 1 1.1 0 128.46 42.52
Bus 2 | 1.1 9.001 188.22 49.13
Bus 3 | 1.1 -11.641 0 70.29
Total Generation Cost = 5694.54 $ /hour

TABLE III
THREE-BUS SYSTEM CVX SOLUTION

Bus [V](p.w) | 0 (degrees) | Pc(MW) | Qg(MVAr)

Bus 1 1.1 0.0031 128.4570 42.5181

Bus 2 1.1 9.0006 188.2194 49.1240

Bus 3 1.1 -11.6410 0 70.2930
Total Generation Cost = 5694.5366 $ /hour

Next, the system gets tested with very high power de-
mands. The power demands are shown in Table IV. MAT-
POWR could not solve the problem, it does not converge
after 20 iterations. On the other hand, CVX solves the
problem, the solution is given in Table V. As the load at
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Fig. 3. Six-Bus System Case Study [10]

Bus 3 increases to 329.76, CVX can not solve the problem
because the solution is in the infeasible area, which is beyond
the AC OPF problem relaxation. In this case, infeasibility
means the system is exceeding the operation limits. Thus,
SDP OPF gives the ability to depict the system operation at
its physical limits.

TABLE IV
THREE-BUS SYSTEM WITH POWER DEMANDS

Bus Pp(MW) | Qp(MVAD)
Bus I | 300 150
Bus 2 | 315 150
Bus 3 | 329.73 150

TABLE V
THREE-BUS SYSTEM CVX SOLUTION

Bus [V](p.u.) | 0 (degrees) | Pc(MW) | Qc(MVAr)

Bus 1 | 1.1 0.0011 499.7572 | 302.9615

Bus 2 | 1.1 4.3729 491.5208 300.5785

Bus 3 | 1.1 -83.8065 0 503.7369
Total Generation Cost = 51,097.3 $ /hour

B. Six-Bus System

The 6-Bus system is taken from [10], it is shown in Fig.
3. The optimal solution of the system using CVX matches
MATPOWER, and it is shown in Table VI.

Again, the power demands dramatically increase to prove
that CVX can solve the problem when it operates at its



TABLE VI
S1xX-BUS SYSTEM CVX AND MATPOWER SOLUTION

Bus [V](p.u) | 0 (degrees) | Pc(MW) | Qg(MVAr)
Bus 1 1.050 0 50 35.33
Bus 2 | 1.050 -0.45 89.63 55.88
Bus 3 1.070 -0.545 77.07 84.88
Bus 4 | 0.987 -2.051 0 0
Bus 5 | 0.985 -2.745 0 0
Bus 6 | 1.005 -2.555 0 0
Total Generation Cost = 3126.36 $ /hour

physical limits, and MATPOWER cannot. The demand loads
are found in Table VII, and the solution is shown in Table
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VIIL
TABLE VII
S1X-BUS SYSTEM WITH INCREASING POWER DEMANDS ON BUsS 4, 5
AND 6

Bus Pp(MW) | Qp(MVAr)

Bus 4 | 150 84

Bus 5 | 100.5 90

Bus 6 | 101 80
TABLE VIII

S1X-BUS SYSTEM CVX SOLUTION

TABLE IX
IEEE 14-BUSs SYSTEM CVX AND MATPOWER SOLUTION

Bus [V](p.u) | 0 (degrees) | Pc(MW) | Qg(MVAr)
Bus 1 | 1.0500 0.0825 107.0510 | 51.7093
Bus 2 | 1.0500 -1.8654 116.4908 99.9985
Bus 3 | 1.0700 -0.1343 144.9349 99.9979
Bus 4 | 0.9500 -5.6386 0 0
Bus 5 | 0.9526 -4.5743 0 0
Bus 6 | 0.9883 -3.8457 0 0

Total Generation Cost = 5013.52 $ /hour

C. IEEE 14-Bus System

Now, we solve IEEE 14-Bus system [11], shown in Fig. 4.
We do a little adjustment on the system, and that is we ignore
the compensation on bus 9. The reason is that we show the
effect of reactive power on maximum loading level on the
bus in the following section. We use CVX and MATPOWER
to solve the system. Both methods give the same optimal
solution that is given in Table IX.

If the active power load at bus 14 only increases to 79.657
MW, MATPOWER cannot solve the problem because it does
not converge. CVX, on the other hand, gives the solution in
Table X. Beyond this value, CVX shows that the solution is
infeasible.

IV. IDENTIFYING MAXIMUM LOAD LEVEL

As the bus demand load increases, the voltage and the fre-
quency decrease for both the bus and the system [12]. Control
systems can be used to restore them, however, there are
certain limitations of the system to handle power demands.
In this section, we investigate the maximum loading level on
bus and determine the bus voltage while the maximum load
occurs. In our examination, we release the power generation

Bus [VI(p.u.) | § (degrees) | Pa(MW) | Qa(MVAr)
Bus 1 1.0600 0 194.2590 0
Bus 2 1.0418 -4.0410 36.7089 32.0250
Bus 3 1.0159 -9.9429 28.7408 26.6046
Bus 4 1.0099 -8.5832 0 0
Bus 5 1.0125 -7.3788 0 0
Bus 6 1.0501 -10.2621 0 14.8189
Bus 7 1.0332 -11.1178 0 0
Bus 8 1.0600 -10.3331 8.7387 16.1913
Bus 9 1.0179 -12.9168 0 0
Bus 10 | 1.0160 -13.1979 0 0
Bus 11 1.0293 -13.1433 0 0
Bus 12 | 1.0336 -13.6974 0 0
Bus 13 | 1.0276 -13.7176 0 0
Bus 14 | 1.0035 | -143278__| 0 0

Total Generation Cost = 8088.22 $ /hour

TABLE X

IEEE 14-BUs SYSTEM CVX SOLUTION
Bus [V](p.u.) | 0 (degrees) | Pc(MW) | Qa(MVAr)
Bus 1 1.0600 -0.0081 37.8290 0
Bus 2 1.0600 -0.2932 105.4574 17.2126
Bus 3 1.0600 -2.7409 83.3948 35.5711
Bus 4 1.0302 -3.3345 0 0
Bus 5 1.0287 -3.1624 0 0
Bus 6 1.0600 -9.1917 13.0089 24.0000
Bus 7 1.0332 -2.3175 0 0
Bus 8 1.0600 6.3088 93.2573 23.1423
Bus 9 1.0175 -7.3617 0 0
Bus 10 | 1.0176 -7.9776 0 0
Bus 11 1.0352 -8.6963 0 0
Bus 12 | 1.0360 -10.6632 0 0
Bus 13 | 1.0184 -11.1546 0 0
Bus 14 | 0.9400 -16.0732 0 0




and the bus voltage limits of the tested bus. By these steps,
we find the maximum demand power on the tested bus, as
well as the voltage at that level. Identifying the maximum
loading level is equivalent to determining the voltage stability
margins. That is, increasing the load above the maximum
limit causes voltage collapse and system instability. We also
show that the ability of loading increases as the tested bus
reactive power raises. We go through the same study cases
in the previous section. The solution is obtained by using
CVX.

A. Maximum Loading Level Formulation

The following are the objective function, which is max-
imizing load on the tested bus, and the physical system
constraints.

max Pp; )

Subject to:
(2)

Note: the voltage constraint on the tested bus is relaxed.

B. Three-Bus System

Starting with ignoring the synchronous condenser on bus
3, we find the bus voltage and the maximum power loading
using (2) and (5), the result is found in Table XI. As bus 3
is compensated by a synchronous condenser with a value of
50 MVAr, the bus voltage and the maximum power loading
are enhanced. The result with compensation is also shown
in Table XI.

TABLE XI
THREE-BUS SYSTEM MAXIMUM LOADING LEVEL

Bus [Vipu) | 6° Pp(MW) | Compensation
Bus 3 | 0.7153 -63.0728 | 113.3347 Qa3 = 0 MVAr
Bus 3 | 0.8465 -69.9686 | 141.7333 Qa3 = 50 MVAr

The solutions from SDP OPF are compared with contin-
uation method using MATPOWER CPF. The PV curves are
shown in Fig. 5. As bus 3 is compensated with 50 MVAr,
the nose, critical, point gets upper-right shifted. The reason
is that the loading level and the voltage become higher. The
two methods lead to the same results.

C. Six-Bus System

In this system, the investigated buses are 4, 5, and 6.
We have examined each bus separately. Then, every bus is
compensated with a synchronous condenser with a value of
20 MVAr. The results of maximizing the load level on each
bus with and without compensation are shown in Table XII.

The comparison between optimization and continuation
methods on the 6-bus system is applied on bus 4 without
compensation. Bus 4 PV curve is shown Fig. 6. The two
methods lead to the same results of 487 MW as Bus 4’s
loading limit.
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TABLE XII
S1X-BUS SYSTEM MAXIMUM LOADING LEVEL
Bus [V](p.u.) | 0 (degrees) | Ppb(MW) | Compensation
Bus 4 | 0.6735 -56.9789 486.7798 | Qa4 = 0 MVAr
Bus 4 | 0.6842 -58.1005 497.6326 | Qa4 = 20 MVAr
Bus 5 | 0.6646 -63.4751 427.5265 Qa5 = 0 MVAr
Bus 5 | 0.6770 -64.8659 438.0877 Qa5 =20 MVAr
Bus 6 | 0.7879 -56.7647 450.0843 Qae = 0 MVAr
Bus 6 | 0.8370 -87.5602 453.3528 | Qae = 20 MVAr

D. IEEE 14-Bus System

The PQ buses in IEEE 14-Bus System are 4, 5,7, 9, 10, 11,
12, 13, and 14. By repeating the same procedure, each bus is
tested alone, the solution is found in Table XIII. Afterward, a
synchronous condenser of values of 19, 30, 50, 100, 150 and
200 MVAr are step-by-step added to bus 9 only to prove that
the maximum loading level increases as the reactive power
raises. The solution of bus 9 maximum loading level with
compensation is found in Table XIII.

By using bus 9 of the 14-bus system to compare optimiza-
tion and continuation methods. The PV curve of bus 9, with
Qa9 = 0 MVAr, is shown Fig. 7. Both methods show that
for Bus 9, 352 MW is the loading limit.

V. CONCLUSION

This paper gives a review of applying SDP AC OPF to find
economic dispatch at heavy loading condition and identify
loading limits. Relaxation of AC OPF problem in SDP form
gives an exact or an approximate global solution without
iterations. We show that the AC OPF problem in SDP form
can be solved using CVX. We test the CVX on various
power system types. Then, we compare the solution with
MATPOWER, which applies the interior point method in
nonlinear programming. We find the solutions match each
other. Moreover, CVX has the ability to give a solution of a
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TABLE XIIT
14-BUS SYSTEM MAXIMUM LOADING LEVEL

Bus [V](p.u.) | 0 (degrees) | Po(MW) | Compensation

Bus 4 0.6766 -81.0280 715.7236 Qga = 0 MVAr
Bus 5 0.6754 -71.9308 682.4810 Qas = 0 MVAr
Bus 7 0.7530 -88.7925 353.3889 Qg7 = 0 MVAr
Bus 10 | 0.6440 -79.6868 253.2913 Qg10 = 0 MVAr
Bus 11 | 0.6361 88.9029 251.2200 Qag11 = 0 MVAr
Bus 12 | 0.6014 86.4068 206.7138 Qg12 = 0 MVAr
Bus 13 | 0.7246 61.9912 314.0533 Q13 = 0 MVAr
Bus 14 | 0.6164 -67.9183 160.4554 Qg14 = 0 MVAr
Bus9 | 06733 | -86.7417 3517682 | Qqo = O MVAr
Bus 9 0.6885 -89.3901 363.6388 Qg9 = 19 MVAr
Bus9 | 0.6974 | 89.1735 370.1267 | Qqo = 30 MVAr
Bus9 | 07139 | 86.7336 3812615 | Qqo = 50 MVAr
Bus 9 0.7560 81.5239 405.8269 Qg9 = 100 MVAr
Bus 9 | 0.7990 | 77.4211 265157 | Qqo = 150 MVAT
Bus 9 0.8422 74.2203 444.1128 Qa9 = 200 MVAr

convex relaxation of AC OPF problem when the system is
operating at the physical constraint limits.

Further, we introduced identifying the maximum power
loading level. We show that the results from SDP OPF well
match the results obtained from MATPOWER’s CPF method.
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