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Abstract—This paper proposes a novel robust cascade struc-
ture which has better performance when the transmission line
undergoes a perturbation. Cascade control structure is normally
used when the control procedure can be split into two (or
more) cascaded parts. Compared with the conventional cascade
control structure which has a limited ability to handle the
perturbation in the plant model, the novel structure has better
robustness when the transmission line inductance varies. After
introducing their structures, the poles and zeros of the closed-
loop system related to the conventional and the robust cascade
structures will be generated and used to analyze their stability.
To verify the theoretical analysis, both cascade structures are
applied to a voltage source converter (VSC) and are simulated
in MATLAB/Simulink. The different step responses are plotted
and analyzed with increasing the transmission line inductance.

Index Terms—Cascade control, robust structure, P/Q con-
trolled VSC

I. INTRODUCTION

A microgrid system contains several distributed and inter-
connected generator units, loads and energy storage units [1].
With more and more Distributed Generations (DGs) installed,
the efficiency and reliability of power system have been
improved because DG systems can share stresses on power
transmission and distribution infrastructure [2], [3].

In DG systems, voltage source converters play an important
role in high quality power transfer. VSCs are widely used to
integrate DG systems to the utility power grid or to drive
the loads. A VSC usually has inner loops to control the
currents while its outer loops are designed based on the
control objectives such as real and reactive power control
(P/Q) and Voltage/Frequency (V/F) [4]–[8]. To connect a VSC-
based DG to the grid, P/Q control is usually utilized. Cascade
structure is very popular when the control process can be
split into the inner loop and the outer loop. With the two
distinct bandwidths, inner loop compensator and outer loop
compensator need to be designed sequentially. Inner loop is
designed based on the plant model first; then, the outer loop is
designed based on the inner closed-loop transfer function [9].
However, if the inner closed-loop transfer function is changed,
the outer loop stability can not be guaranteed. In another
word, the design of the conventional controllers is strongly
dependent on the plant model of the specific circuit. Therefore,
if the plant model is changed because of any perturbation in
the circuit, this system may become unstable. For example,
the transmission line is necessarily required to connect the
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DG to the grid and its inductance is variable dependent on
its length. When the inductance is out of the acceptable
range, the conventional control control loop will not make the
system stable. The system may have over voltage or oscillation
problems to damage the system.

Power electronics and control technology are improved
towards to increase the performance, robustness, and reliability
[2], [8], [10], [11]. Therefore, in order to deal with the
uncertain change of the inductance of the transmission line, a
robust control system is very necessary. The robust cascade
structure proposed in [9] with an application in chemical
process control is analyzed and implemented to a VSC with
P/Q control in this paper. This structure can handle inductance
increasing of the transmission line. With this novel robust
cascade control structure, the DG system robustness can be
enhanced by minimizing the mutual influence among the
cascaded loops.

The rest of the paper is organized as follows: Section II
will present the structures of the conventional cascade system
and stability analysis using transfer function and the pole-
zero map. Section III presents the robust cascade system. In
Section IV, the simulation results of the conventional and
robust cascade structures will be plotted and compared to
verify the theoretical analysis in Section II and III. Section
V is the conclusion.

II. CONVENTIONAL CASCADE STRUCTURE USED IN P/Q
CONTROL

A. Overall structure of the VSC circuit with P/Q control

Fig. 1 shows the structure of the grid-imposed frequency
VSC circuit with P/Q control. The control objective is to
control the real power and reactive power at the point of
common coupling (PCC). When the DG system connects to
the grid, the voltage and frequency at PCC point are fixed.
Because the control loop design is in (d + jq)-frame, phase-
locked loop (PLL) is used to achieve a synchronization.

With this configuration, the differential equations of the
currents through the transmission line can be expressed as:

L
did
dt

= −(R+Ron)id + Lωiq + Vtd − Vsd,

L
diq
dt

= −(R+Ron)iq − Lωid + Vtq (1)

After decoupling the speed voltage part and transfer (1)
from time domain to Laplace domain, inner loop plant model
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Fig. 1: Overall structure of the VSC circuit with P/Q control.

H(s) can be found using (2).

id(s) =
1

Ls+R+Ron
uid(s)

iq(s) =
1

Ls+R+Ron
uiq(s) (2)

where uid and uiq are the intermediate signals which are
defined as:

uid = −Lωiq + Vtd − Vsd
uiq = Lωid + Vtq − Vsq (3)

Hence, H(s) is 1
Ls+R+Ron

and its outputs are id(s) and iq(s).
Define the outer loop plant model as G(s) whose inputs are
id(s) and iq(s) and outputs of G(s) are P and Q. Hence, G(s)
is a constant gain, 3

2Vsd, based on the following equations (4).

S = V I∗ =

√
3

2
(vsd − jvsq)

√
3

2
(id + jiq)

P =
3

2
vsdid

Q = −3

2
vsdiq (4)

B. Conventional cascade structure

A typical conventional cascade control structure is shown in
Fig. 2. In this figure, there are two loops, the inner loop F1(s)
and the outer loop F2(s). H(s) and G(s) are the plant models
of F1(s) and F2(s) respectively. R1(s) and R2(s) are the
corresponding compensators. y0(t) and y(t) are the input and
output of the system. w(t), u(t) and v(t) are the intermediate
signals in time domain. Their Laplace representations can be
defined as Y 0(s), Y (s), W (s), U(s), and V (s).

R2(s) R1(s) H(s) G(s)
-

+y
0

-

w u

F1(s)

v y

F2(s)

Fig. 2: Block diagram of the conventional cascade structure.

Two compensators, R1(s) and R2(s), need to be designed
sequentially [12], [13]. Since the inner loop and outer loop
are independent with each other, the conventional control
design philosophy is to design the inner loop compensator first.
When the inner loop can track the reference, the outer loop
compensator is then designed. The bandwidth of the outer loop
should be smaller than the inner loop so the inner loop F1(s)
will reach steady state very fast. With this design philosophy,
the interaction between the inner loop and the outer loop is
minimized.

It is assumed that plant models of the inner loop and the
outer loop are time-invariant single-input-single-output (SISO)
linear systems. Hence, the outputs of the inner loop and outer
loop, Y (s) and V (s), can be represented as:

Y (s) = G(s)V (s)

V (s) = H(s)U(s) (5)

Then, the inner closed-loop transfer function F1(s) is de-
rived as:

F1(s) =
V (s)

W (s)
=

R1(s)H(s)

1 +R1(s)H(s)
(6)

Because the inner loop has much faster dynamics than the
outer loop, F1(s) is considered as 1. This condition is claimed
as the ideal condition. Under the ideal condition, F2i(s) can be
assigned initially to the transfer function F2(s) so the closed-
loop transfer function of the whole cascade structure is:

F2(s) =
Y (s)

Y 0(s)
= F2i(s)

=
R2i(s)G(s)

1 +R2i(s)G(s)

(7)

where R2i is the ideal compensator.
After converting (7), the transfer function of the outer loop

compensator R2(s) is obtained.

R2(s) = R2i(s) =
F2i(s)

G(s)(1− F2i(s))
(8)

With inductance increasing, the transfer function of the
inner loop will be changed. It makes the dynamics of the inner
loop slower. In another word, the system will not be under the
ideal condition. To keep W (s)/Y 0(s) remain the same as in
the ideal case, the compensator under the non-ideal condition
R2r(s) needs to be rewritten as:

R2(s) = R2r(s) =
R2i(s)

1 +R2i(s)G(s)(1− F1(s))
(9)

If F1(s) undergoes a perturbation, the closed-loop transfer
function of the conventional cascade structure will be F2r(s)
rather than F2i(s).

F2(s) = F2r(s) =
R2(s)F1p(s)G(s)

1 +R2(s)F1p(s)G(s)
(10)

where F1p(s) is F1(s) with a perturbation.
Substituting (9) into (10) and simplifying it,

F2(s) = F2r(s) =
F2i(s)F1p(s)

1 + F2i(s)(F1p(s)− F1(s))
(11)



After obtaining the closed-loop transfer function for the con-
ventional cascade structure in Fig. 2, we can find the locations
of poles and zeros by providing the specific parameters. The
used parameters are listed in Table I and the used detailed
equations are (12). If the inductance L is increased while other
parameters keep the same, multiple poles will be plotted in one
figure to generate the pole-zero map shown in Fig. 3. Along
with the transmission line inductance L raising from 100 µH
to 900 µH, the four poles are moving forward to the imaginary
axis, even to the right half plane (RHP). It clearly shows that
the system should be unstable when L =900 µH because of
the poles dropped on RHP.

H(s) =
1

Ls+R+Ron

G(s) =
3
√
2

2
√
3
Vgrid

F1(s) =
R1

1
Ls+R+Ron

1 +R1
1

Ls+R+Ron

F2(s) =
R2F1(s)G(s)

1 +R2F1(s)G(s)
(12)
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Fig. 3: Pole-zero map of the conventional cascade structure.

C. P/Q control loop using the conventional cascade structure

The aforementioned subsection analyzed the stability of the
conventional cascade structure using simplified block diagram
and transfer functions. If we apply this structure to the
VSC circuit with P/Q control, the control diagram should be
designed like Fig. 4.
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Fig. 4: P/Q control diagram with the conventional cascade
control.

θ is generated by a PLL with inputs from PCC voltage
Vs. Because the inner loop bandwidth is sufficiently larger
than the outer loop bandwidth, the speed of the overall system
dynamics is dependent on the outer loop. P/Q outer loop can be
designed according to the classical design criteria. However,
if a large variation happens in the inner loop plant model,
especially if the inductor size is increased, the conventional
cascade structure can not make the system stable.

III. ROBUST CASCADE STRUCTURE USED IN P/Q
CONTROL

The robust cascade structure is analyzed based on the same
VSC circuit shown in Fig. 1, so the circuit will not be
introduced in this section.

A. Robust cascade structure

Fig. 5 shows the robust cascade structure of cascade control.
The most obvious difference is that the robust cascade struc-
ture has one more feedback loop. The inner loop does not
change. Therefore, only the new feedback compensator R4(s)
and the outer loop compensator R3(s) should be redesigned.
They are expressed by the following:

R3(s) =
F2i(s)

G(s)

R4(s) = F2i(s) (13)
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-
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Fig. 5: Block diagram of the robust cascade structure.

For the robust cascade structure, if F1(s) undergoes a
perturbation, the new transfer function of the inner loop with
R4 is F1p(s)

1−R4(s)F1p(s)
. After replacing F1(s) using the new inner

loop transfer function, the transfer function of the whole robust
cascade structure is expressed as:

F2(s) = F2r(s) =

R3(s)F1p(s)G(s)
1−R4(s)F1p(s)

1 +
R3(s)F1p(s)G(s)
1−R4(s)F1p(s)

(14)

Substituting R3(s) and R4(s) into 14,

F2(s) = F2r =

F2i(s)F1p(s)G(s)
G(s)

1− F2i(s)F1p(s) +
F2i(s)G(s)F1(s)

G(s)

= F2i(s)F1p(s) (15)

Equation (15) clearly shows that the robust structure is
asymptotically stable as long as F1p(s) and F2i(s) are asymp-
totically stable. The inner loop of the robust cascade structure



is the same as that of the conventional cascade structure while
their outer loops are different. Therefore, F1(s), H(s), and
G(s) in (12) can be used for this structure while F2(s) needs
to be rewritten as (16). The parameters used for the robust
cascade structure are from Table I, too.

F2(s) =
R3

F1(s)
1−R4F1(s)

G(s)

1 +R3
F1(s)

1−R4F1(s)
G(s)

(16)

Based on (16), the pole-zero map of the robust cascade
structure can be mapped with the same method. Fig. 6 shows
the pole-zero map of the robust cascade structure shown in
Fig. 5. Like Fig. 3, the two poles are moving forward to the
imaginary axis with increasing transmission line inductance
L from 100 µH to 900 µH. However, the poles keep in left
half plan (LHP) even if L =900 µH. It is concluded that the
novel robust cascade structure improves the robustness of the
cascaded structure control.
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Fig. 6: Pole-zero map of the robust cascade structure.

B. P/Q control loop using the robust cascade structure

Fig. 7 shows the P/Q control diagram with the robust
cascade structure. The robust cascade structure has a feedback
compensator R4 and a new R3 so the control diagram is
improved using these two compensators. Fig. 4 and Fig. 7
are used to build the average models in MATLAB/Simulink.
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Fig. 7: P/Q control diagram with the robust cascade control.

IV. CASE STUDY

To compare the performances of both cascade structures,
two average models were built based on Fig. 1 and simulated

TABLE I: Parameter Initial Settings of P/Q Controlled VSC.

Parameter Values

VDC 1250 V

Vgrid 480 V

L 100 µH

R+Ron 1.63 mΩ

Carrier frequency fs 3420 Hz

τi 2.0 ms

R1
0.05s+0.815

s

R2
0.003s+0.03

s

R3
0.001086s+0.01086

s

R4
0.6386s+6.386

s

in Matlab/Simulink. They were corresponding to both of the
conventional and robust cascade structures. The parameters
used in the average models are from [11] and listed in Table
I.

The total simulation time is 100 seconds and there were
two events happened during it. The real power reference P ∗

was increased from 500 kW to 700 kW at 40 second while
the reactive power reference Q∗ was increased from 0 to 150
kVAr at 70 second. The reference values were plotted by the
red dotted lines in Fig. 8 and Fig. 9. The simulation results
were plotted by the solid blue lines in figures to show the step
responses of P and Q.

According to Fig. 3 and Fig. 6, the critical eigenvalues of
the conventional cascade structure are −6.405 and −1373.3
when L =100 µH; the critical eigenvalues of the robust
cascade structure are −6.3767 and −499.4238 with the same
L. Hence, the theoretical analysis proves that both of the
cascade structures can make the system stable if L =100 µH.
The first rows of Fig. 8 and Fig. 9 verified it. In addition, the
perfect reference tracking on P and Q can indicate that the
control objective was achieved by both of structures.

Besides the initial value of the transmission line inductance,
another three different values of L were selected, 500 µH,
860 µH, and 900 µH. Based on the pole-zero map, they can
cause the conventional cascade structure system under three
different stability levels, small oscillation, large oscillation,
and unstable. All of three stability levels can also be verified
by the left columns of Fig. 8 and Fig. 9. For example, when
L =900 µH, two critical eigenvalues of the conventional
cascade structure are 0.0316 ± 10.0988i, which are located
on RHP shown in Fig. 3 so the system should be unstable.
In its corresponding plots, the left lowest plots of Fig. 8 and
Fig. 9, the oscillations of the step responses became larger and
larger so the system could not return to steady state anymore.
For another example, when L =860 µH, two critical poles
are very closed to the imaginary axis and the damping is
0.0214 at those locations. In another word, the step responses
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Fig. 8: The step responses of P corresponding to different L. The left column is related to the conventional cascade structure
while the right column is related to the robust one. Red dotted line is the reference.

in the conventional cascade structure should have the obvious
oscillations when L =860 µH. Actually, the corresponding
plots in Fig. 8 and FIg. 9 showed the large oscillations.

Now, let’s compare the left columns and right columns
of Fig. 8 and Fig. 9. The left columns are related to the
conventional cascade structure and the right columns are
related to the robust one. Both of them had the very similar
step responses when L was relative small shown in the first
row of Fig. 8 and Fig. 9. However, when L was increased
to 860 µH, the step responses of the conventional structure
had the obvious oscillations while the robust one only had
a few oscillations. Furthermore, although the conventional
one became unstable, the robust cascade structure kept stable
and its step responses still remained a few oscillations when
L =900 µH. According to these two figures, it is concluded
that the robust cascade structure can make the system stable
within the large range of the transmission line inductance.
In another word, the robust cascade structure improves the
robustness of VSC circuit with the P/Q control.

V. CONCLUSION

It is the first time to design the robust cascade structure for
the VSC circuit with P/Q control. After analyzing the stability
of the conventional and robust cascade structures using the
pole-zero maps of the closed-loop systems, we can claim that
the robust cascade structure can make the VSC circuit with
P/Q control have better robustness on the transmission line
inductance. The simulation results from the average models
verify the theoretical analysis. Oscillations can be observed
obviously in the step responses from the conventional model
with inductance increasing while the simulation results from
the robust model had much better performance. Therefore, the
robust cascade structure has a great potential in VSC control.
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