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Abstract— Phasor measurement units (PMUs) provide syn-
chronized measurements of voltage and current phasors and
can make state estimation more accurate. The objective of
optimal PMU placement (OPP) problem is to minimize the
number of PMUs required for the system to be completely
observable. This paper presents two different formulations of
optimal PMU placement (OPP) problem: mixed integer linear
programming (MILP) and nonlinear programming (NLP).
For each formulation, modeling of power flow measurements,
zero injection, limited communication facility, and single PMU
failure is studied. The contribution of our paper is to conduct
a comparison between the MILP and NLP formulations and
show the advantages and disadvantages of each formulation.

Index Terms— Mixed integer linear programming, nonlinear
programming, optimal PMU placement

I. INTRODUCTION

The power system security needs to have a detailed
monitor to the operating conditions of the system. In the
control center, the state estimator can deal with the mea-
surements received from the remote terminal units (RTUs)
at the substations. Those measurements include bus voltages,
branch currents, real and reactive power flows, and power
injections. Recently, phasor measurement units (PMUs) with
the help of global positioning system (GPS) can provide
synchronized phasor measurements of voltages and currents
[1]. That will improve the performance of the state estimator
because the synchronized measurements provided by PMUs
during the dynamic event will make the state estimation
more accurate [2]. When a PMU is placed at one bus, it
can measure the bus phasor voltage and phasor currents of
all lines connected to that bus making the system observable
[3]. However, integrating PMUs at each bus instantaneously
is difficult and expensive. Then the problem that needs to be
solved is to find the optimal PMU placement that can make
the system observable using PMUs at certain buses.

In this paper, the optimal PMU placement (OPP) prob-
lem is solved using two different approaches which are
mixed integer linear programming (MILP) and nonlinear
programming (NLP). The system is then studied over several
cases including power flow measurements, zero injection,
limited communication facility, and single PMU failure. A
comparison between the two approaches is conducted to

show their advantages and disadvantages. In addition, system
observability redundancy index (SORI) is demonstrated to
provide a higher redundancy. Therefore, the objective of this
formulation is to minimize the total number of PMUs and
maximize the redundancy measurements in power systems.

The remaining sections are organized as follows. Section
II and section III explain mixed integer linear programming
formulation and nonlinear programming formulation. Section
IV investigates the aforementioned four case studies. Section
V and VI are OPP problem simulation results and conclusion.

II. MIXED INTEGER LINEAR PROGRAMMING
FORMULATION

The power system state estimation investigated in this
paper is a dc power flow based linear state estimation.

z = Hx+ e (1)

where z is the measurement vector, x is the state vector, H is
the measurement matrix, and e is the error vector. The states
are the voltage phase angle (θi for Bus i) of every bus in the
power grid. The measurements are assumed to come from
PMUs, which include phase angle of Bus i and the power
flow measurements from Bus i to adjacent buses (j ∈ adi,
where adi is the buses adjacent to Bus i). Therefore, if θi is
measured by the PMU, then θj can also be found since Pij is
measurable (Pij =

1
Xij

(θi − θj) where Xij is the reactance
of the line). Thus, with a PMU installed at Bus i, Bus i and
all its adjacent buses are observable.

The following is a mixed integer linear programming
formulation [3]:

min
x

N∑
k=1

wk xk (2a)

subject to: Ax ≥ B (2b)
xi ∈ {0, 1}, i = 1, · · · , N (2c)

where xi notates if Bus i has a PMU installed (xi = 1) or
not (xi = 0), and the objective function is the minimization
of the number of PMUs to be installed. The wk is the
PMU installation cost. Note that all PMUs have the same
installation cost ( wi = 1) which makes the minimization of



the PMU installation cost is equivalent to the minimization of
the number of PMUs. The A matrix’s element is as follows.

a(i, j) =


1, if Bus i and Bus j are connected
1, i = j

0. if Bus i and Bus j are not connected

The B matrix will be:

B =
[
1 1 · · · 1

]T
Take the ith constraint: (A)ix ≥ 1 (where i means ith

row). It means that at least one PMU should be placed on
one of the buses that are connected to Bus i or on Bus i.

To explain the above formulation, the mixed integer linear
programming problem is solved for the IEEE 14-bus system
as shown in Fig. 1.

Based on the problem formulation, the mixed integer linear
programming will be as the following:

min
x

14∑
k=1

xk

subject to: Ax ≥ B
xi ∈ {0, 1}, i = 1, 2, · · · 14.

Then we can find matrix A based on the a(i, j) entries as
the following:

A =



1 1 0 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 1 0 1 0 0 0 0 0
1 1 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 1 1 1 0
0 0 0 1 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0 1 1 0 0 0 1
0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 1 0 0 0 1 1


The constraints can be formed as:

f(x) =



f1 = x1 + x2 + x5 ≥ 1

f2 = x1 + x2 + x3 + x4 + x5 ≥ 1

f3 = x2 + x3 + x4 ≥ 1

f4 = x2 + x3 + x4 + x5 + x7 + x9 ≥ 1

f5 = x1 + x2 + x4 + x5 + x6 ≥ 1

f6 = x5 + x6 + x11 + x12 + x13 ≥ 1

f7 = x4 + x7 + x8 + x9 ≥ 1

f8 = x7 + x8 ≥ 1

f9 = x4 + x7 + x9 + x10 + x14 ≥ 1

f10 = x9 + x10 + x11 ≥ 1

f11 = x6 + x10 + x11 ≥ 1

f12 = x6 + x12 + x13 ≥ 1

f13 = x6 + x12 + x13 + x14 ≥ 1

f14 = x9 + x13 + x14 ≥ 1

III. NONLINEAR PROGRAMMING FORMULATION

A. NLP Formulation

In addition to the mixed integer linear programming,
optimal PMU placement can be formulated as nonlinear
programming which can be solved by sequential quadratic
programming (SQP) [4], [5]. Nonlinear programming for-
mulation can result in several solutions for the optimal
PMU placement problem, whereas the mixed integer linear
programming obtains only one solution.

In nonlinear programming formulation, xi is no longer a
binary variable. Rather, it is treated as a continuous variable.
To enforce xi to be either 1 or 0, the following constraint is
used: xi(xi − 1) = 0.

The nonlinear programming formulation minimizes the
quadratic objective function, which represents the total PMU
installation cost, subject to nonlinear equality constraints.
The lower bound and upper bound of the decision variables
are 0 and 1 respectively. Note that the network observability
is represented by the nonlinear equality constraints [4], [5].
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Fig. 1. IEEE 14-Bus System.
Reference: Power System Case Archive by University of

Washington.

The following is a nonlinear programming formulation for
optimal PMU placement:

min
x

J(x) = xTWx =

N∑
k=1

wk x
2
k (3a)

s.t.: gi(x) = ( 1− xi)
∏

j∈adi

( 1− xj) = 0 (3b)

0 ≤ xi ≤ 1, for all i ∈ S (3c)

where J(x) is the objective function, xT is the vector of the
PMU placement, W is the diagonal weight (PMU installation
cost) matrix, adi is the buses adjacent to Bus i, and S is the
set of buses in the system.

This is a nonconvex problem due to the nonlinear con-
straints which lead to several local minimum points to the
optimization problem [4]. This gives us different solutions



for the optimal PMU placement shall we start from different
initial x. This nonlinear programming is solved by sequential
quadratic programming (SQP) algorithm.

To explain the above formulation, the nonlinear program-
ming problem is solved for IEEE 14-bus system (Fig. 1), and
it is compared with the solution of the mixed integer linear
programming.

Based on IEEE 14-bus system, the nonlinear programming
will be as the following:

min
x

14∑
k=1

x2k

s.t.: gi(x) = ( 1− xi)
∏

j∈adi

( 1− xj) = 0

0 ≤ xi ≤ 1, i = 1, 2, · · · 14.

where gi(x) will be as the follows.

gi(x) =



g1 = ( 1− x1)( 1− x2)( 1− x5) = 0

g2 = ( 1− x2)( 1− x1)( 1− x3)( 1− x4)
( 1− x5) = 0

g3 = ( 1− x3)( 1− x2)( 1− x4) = 0

g4 = ( 1− x4)( 1− x2)( 1− x3)( 1− x5)
( 1− x7)( 1− x9) = 0

g5 = ( 1− x5)( 1− x1)( 1− x2)( 1− x4)
( 1− x6) = 0

g6 = ( 1− x6)( 1− x5)( 1− x11)( 1− x12)
( 1− x13) = 0

g7 = ( 1− x7)( 1− x4)( 1− x8)( 1− x9) = 0

g8 = ( 1− x8)( 1− x7) = 0

g9 = ( 1− x9)( 1− x4)( 1− x7)( 1− x10)
( 1− x14) = 0

g10 = ( 1− x10)( 1− x9)( 1− x11) = 0

g11 = ( 1− x11)( 1− x6)( 1− x10) = 0

g12 = ( 1− x12)( 1− x6)( 1− x13) = 0

g13 = ( 1− x13)( 1− x6)( 1− x12)
( 1− x14) = 0

g14 = ( 1− x14)( 1− x9)( 1− x13) = 0

Note that we assume that the installation cost (wi) for all
buses is equal to 1.

This problem can be solved using fmincon function in
MATLAB which can solve nonlinear programming (NLP)
using sequential quadratic programming solver (SQP). Then
the optimal PMU placement will be as the following:

x =
[
0 1 0 0 0 0 0 1 0 1 0 0 1 0

]T
Thus, the optimal PMU placement will be on buses 2, 8,

10, and 13.

The same problem is solved using the mixed integer linear
programming by MATLAB and intlinprog function, and we

found the same optimal placement which will be on buses
2, 8, 10, and 13.

As mentioned above, the nonlinear programming provides
several solutions to the problem. Thus, we changed the initial
values to be random numbers in the feasible set whose
decision variable x should be larger than zero and less than
one. After several iterations, we got the following optimal
solutions:

x =
[
0 1 0 0 0 0 1 0 0 0 1 0 1 0

]T
,

x =
[
0 1 0 0 0 0 1 0 0 1 0 0 1 0

]T
,

x =
[
0 1 0 0 0 1 0 1 1 0 0 0 0 0

]T
, and

x =
[
0 1 0 0 0 1 1 0 1 0 0 0 0 0

]T
Therefore, nonlinear programming is an effective way to

find the optimal PMU placement providing several optimal
solutions to choose from. Table I shows the comparison
between mixed integer linear programming and nonlinear
programming for the optimal PMU placement.

TABLE I. OPP RESULTS USING MILP AND NLP/SQP

Test Algorithm
(IEEE 14-Bus)

Minimum
Optimal

Set

PMU Placement
Bus

CPU Time
(s)

MILP 4 2,8,10,13 0.06
NLP/SQP 4 2,8,10,13 0.7

2,7,10,13
2,7,11,13

2,6,7,9
2,6,8,9

B. System Observability Redundancy Index

In order to maximize the redundancy measurements in the
power system, the system observability redundancy index
(SORI) should be considered. SORI is an essential parameter
for the security monitoring of the power system [6]. SORI
is defined as the total number of all Bus Observability Index
(BOI) of the system, where BOI is the number of PMUs
that can observe a certain bus. Then SORI is given by the
following [6], [7]:

σ =

k∑
i=1

βi (4)

where σ is SORI, and βi is BOI for a certain bus i.

SORI gives the ability to choose the perfect minimum
optimal set among the other sets [6], [7]. It can make the
power system more reliable providing the maximum redun-
dancy measurements. When the number of SORI is high, the
optimal set presents higher measurement redundancy. Table
II presents different optimal sets with their SORI. Therefore,
maximum redundancy measurements will be provided in the
power system.



TABLE II. SORI FOR EACH OPTIMAL SET

Minimum Optimal
Set

PMU Placement
Bus

SORI

4

2,8,10,13 14
2,7,10,13 16
2,7,11,13 16

2,6,8,9 17
2,6,7,9 19

Thus, the objective of the optimal PMU placement for-
mulation is to minimize the total number of the PMUs
and maximize the redundancy measurements in the power
system.

IV. OPTIMAL PMU PLACEMENT CASE STUDIES

A. OPP Formulation with Power Flow Measurements

Let’s assume that there is a power flow meter on Line ij
in the system. When either Bus i’s or Bus j’s state (phase
angle) is known, other bus’s angle can be found should Pij =
1

Xij
(θi−θj) (where Xij is the reactance of the line) is given.

1) MILP Formulation: The observability constraints
should be changed considering power flow measurements.
In the absence of the power measurements on lines i–j, the
observability constraints of the two buses will be given by:

fi(x) = (A)ix ≥ 1 (5a)
fj(x) = (A)jx ≥ 1 (5b)

where (A)i means the ith row of A matrix, and (A)j
means the jth row of A matrix. Then in the presence of the
power measurements on lines i–j, the above two constraints
will be merged into the following joint constraint [3], [8]:

fflow,i = fi(x) + fj(x) ≥ 1 (6)

The above constraint means that as long as Bus i or Bus
j is observable, then the other bus is also observable due to
the power flow meter.

2) NLP Formulation: The observability constraints of the
NLP formulation should be changed considering the power
flow measurements as well. Then the two constraints of Bus i
and Bus j in the absence of power flow measurement will be
merged into a joint constraint in case of flow measurements
on lines i–j as follows [6].

gi(x) = 0 (7a)
gj(x) = 0 (7b)

gflow,i(x) = gi(x)gj(x) = 0 (8)

Note that a high order term (1 − xi)n can be generated
because of the common existence of the term ( 1− xi) of
the two observability constraints gi(x) = 0 and gj(x) = 0

[6]. Since the right hand of the observability constraint is
zero, the high order term will be equivalent to the first order
term.

3) Example of OPP Formulation with Power Flow Mea-
surements: Let’s assume that there are power flow measure-
ments on lines 2-3, 3-4, 6-11, 6-12, and 7-8 in the IEEE 14-
bus system (Fig. 1). Then we are going to find fflow,i ≥ 1
and gflow,i = 0 for MILP and NLP respectively.

a) MILP Joint Constraints: First, the power flow mea-
surements on lines 2-3 and 3-4:

f2 = x1 + x2 + x3 + x4 + x5 ≥ 1

f3 = x2 + x3 + x4 ≥ 1

f4 = x2 + x3 + x4 + x5 + x7 + x9 ≥ 1

Finding the joint constraint from (6) as follows.

fflow,2 = f2 + f3 + f4 ≥ 1

= x1 + 3x2 + 3x3 + 3x4 + 2x5 + x7 + x9 ≥ 1

The joint constraint indicates that whenever one of the
buses (2,3,4) is observable, the rest are observable due to
the meters. Thus, we merged the constraints f2, f3, and f4
into one joint constraint fflow,2 to assure a placement of
one PMU for one of those buses or their adjacent buses. It
is obvious that in the case of the power flow measurements,
the number of PMUs will be reduced (see Table III).

Second, the power flow measurements on lines 6-11 and
6-12:

f6 = x5 + x6 + x11 + x12 + x13 ≥ 1

f11 = x6 + x10 + x11 ≥ 1

f12 = x6 + x12 + x13 ≥ 1

The joint constraint will be:

fflow,6 = x5 + 3x6 + x10 + 2x11 + 2x12 + 2x13 ≥ 1

Third, the power flow measurement on line 7-8 will result
in the following:

fflow,7 = x4 + 2x7 + 2x8 + x9 ≥ 1

b) NLP Joint Constraints: The NLP constraints for
buses 2, 3, and 4 will be as the following:

g2 = ( 1− x2)( 1− x1)( 1− x3)( 1− x4)( 1− x5) = 0

g3 = ( 1− x3)( 1− x2)( 1− x4) = 0

g4 = ( 1− x4)( 1− x2)( 1− x3)( 1− x5)( 1− x7)
( 1− x9) = 0

The joint constraint for the NLP formulation considering
the power flow measurements on lines 2-3 and 3-4 which is
obtained from (8) will be as the following:



gflow,2 = g2g3g4 = 0

= ( 1− x1)( 1− x2)( 1− x3)( 1− x4)( 1− x5)
( 1− x7)( 1− x9) = 0

The joint constraints for power flow measurements on lines
6-11, 6-12, and 7-8 will be as follows.

gflow,6 = g6g11g12 = ( 1− x5)( 1− x6)( 1− x10)
( 1− x11)( 1− x12)( 1− x13) = 0

gflow,7 = g7g8 = ( 1− x4)( 1− x7)( 1− x8)( 1− x9) = 0

B. OPP Formulation with Zero Injection
1) MILP and NLP Formulation: Supposing that the sys-

tem has a zero injection pseudo measurement at Bus i, then
we obtain a constraint considering that the power injection at
Bus i is zero. The observability constraints of the problem
that account for the injection bus are incorporated into a
single joint constraint for MILP as follows [3].

finjt,i(x) = fi(x) +
∑
j∈adi

fj(x) ≥ m− 1 (9)

where m is the total number of Bus i and its adjacent
buses.

Therefore, the pseudo measurement of the zero injection
bus leads to calculate a voltage phasor for one bus from its
adjacent buses as long as voltage phasors of all remaining
buses are available [9]. The joint observability constraint
provides one constraint for the observability constraints of
the injection Bus i and all of the adjacent buses to that bus
(adi). There is no difference between the zero and nonzero
injection bus [8].

The NLP joint constraint is developed in [6], and ex-
pressed as the following:

ginjt,i(x) = gi(x)
∏

j∈adi

gj(x) = 0 (10)

This joint constraint is not equivalent to (9). The joint
constraint (10) indicates that Bus i and its adjacent buses
are observable whenever one of those buses is observable
which may end up with unobservable buses.

2) Example of OPP Formulation with Zero Injection Bus:
Let’s assume that Bus 7 is a zero injection bus (ZIB) in the
IEEE 14-bus system (Fig. 1). Then finjt,7 ≥ m − 1 and
ginjt,7 = 0 are found to show how these two constraints are
not equivalent.

a) MILP and NLP Joint Constraint: The adjacent buses
to Bus 7 are buses 4, 8, and 9 (m = 3). Then we are going
to find the joint constraint for MILP as the following:

f4 = x2 + x3 + x4 + x5 + x7 + x9 ≥ 1

f7 = x4 + x7 + x8 + x9 ≥ 1

f8 = x7 + x8 ≥ 1

f9 = x4 + x7 + x9 + x10 + x14 ≥ 1

Finding the MILP joint constraint from (9) as follows.

finjt,7 = f4 + f7 + f8 + f9 ≥ 3

= x2 + x3 + 3x4 + x5 + 4x7 + 2x8 + 3x9 + x10

+ x14 ≥ 3

While the NLP joint constraint is obtained from (10) as
the following:

ginjt,7 = g4g7g8g9 = 0

= ( 1− x2)( 1− x3)( 1− x4)( 1− x5)( 1− x7)
( 1− x8)( 1− x9)( 1− x10)( 1− x14) = 0

The MILP joint constraint means that if three of the buses
(4,7,8,9) are observable, the fourth bus will be observable.
On the other hand, it is clear that the NLP joint constraint
means that if one of buses (4,7,8,9) is observable, the other
three buses will be observable which might result in a wrong
solution.

C. OPP Formulation with Limited Communication Facility

The limited communication facility in the substation can
prevent the PMU installation due to the lack of data links
required to enable the communication between PMUs and
the control center. This problem can affect the installation
cost of the PMU to be much higher [10]. Thus, a high
installation cost wi will be assigned to the bus that has
a limited communication facility for both MILP and NLP.
Consequently, the high installation cost will exclude the
limited communication facility buses from the optimal set
[6].

Let’s assume that there are limited communication facil-
ities at buses 2 and 9 on the IEEE 14-bus system (Fig. 1).
Then high installation costs (wi = 109) are assigned to buses
2 and 9, whereas installation costs of the other buses are kept
as wi = 1.

D. OPP Formulation with Single PMU Failure

Although PMUs are reliable devices, failure of a single
PMU is possible. Therefore, to protect the system from losing
one PMU and leaving the system unobservable, the optimal
PMU set is divided into two sets which are main set and
backup set. The main set is the set obtained without a PMU
failure, while the backup set is the set that we are going to
obtain. For MILP formulation, every bus in the system is
going to be observed by two PMUs which modify the right
hand side of the inequality constraints to be two instead of
one [7]. Also, the backup set of the MILP formulation can
be obtained by removing xi terms that represent the main
set. Similarly, the backup set for the NLP formulation is
going to be obtained by removing all of the terms ( 1−xi)
and ( 1 − xj) that are related to the main set from the
observability constraints [6]. This will ensure that the same
bus will not pick up more than one time. Thus, the backup
set will keep the system observable in case of a single PMU
failure.

Note that we get the main set by solving the problem
without considering the PMU failure, and we choose the



main set to be on buses 2, 8, 10, and 13 (see Table I). Thus,
we removed all of the terms x2, x8, x10, and x13 from the
MILP constraints. Likewise, we removed all of the terms
( 1− xi) and ( 1− xj) from the observability constraints
of NLP which are ( 1 − x2) , ( 1 − x8) , ( 1 − x10) , and
( 1− x13) because they are related to the main set.

TABLE III. A COMPARISON BETWEEN NLP AND MILP

Optimal PMU
Placement Problem

Case

Minimum
Optimal

Set

MILP PMU
Placement

NLP/SQP
PMU

Placement

Power flow measure-
ments (on lines 2-3,
3-4, 6-11, 7-8, and 6-
12)

3 1,7,13 1,4,13
1,6,9
1,7,13
1,9,12
2,4,13
2,6,9
2,7,13
2,9,13
2,9,12
5,7,13
5,9,12

Limited communica-
tion facility (on buses
2 and 9)

5 3,5,8,10,13 1,3,7,10,13
1,3,7,11,13
1,3,8,10,13
1,4,7,10,13
1,4,8,10,13
3,5,7,11,13
3,5,8,10,13
4,5,7,10,13
4,5,7,11,13
4,5,8,10,13
4,5,8,11,13

Single PMU failure

9 2,8,10,13
(Main) +
1,4,6,7,9
(Backup)

2,8,10,13
(Main)+
1,3,6,7,9
(Backup)
2,8,10,13
(Main)+
1,4,6,7,9
(Backup)
2,8,10,13
(Main)+
3,5,6,7,9
(Backup)
2,8,10,13
(Main)+
4,5,6,7,9
(Backup)

V. OPP PROBLEM SIMULATION RESULTS

A comparison between NLP and MILP is conducted for
the aforementioned OPP cases. Power flow measurements,
limited communication facility, and single PMU failure are
formulated using mixed integer linear programming and non-
linear programming. The optimization problems are solved
by MATLAB intlinprog function for MILP and fmincon func-
tion using sequential quadratic programming solver (SQP)
for NLP. Table III presents the comparison between NLP
and MILP. It is clear that MILP solution matches with
one of the optimal sets provided by NLP. In the power
flow measurements case, the number of PMUs in both
formulations is reduced to be 3 instead of 4 in the general
case (see Table I) due to the power flow meter. In contrast, the

number of PMUs is increased in the limited communication
facility case as shown in Table III. In the single PMU failure
case, another optimal set is provided to be a backup set which
would be very expensive to install. Note that we exclude the
zero injection case from the comparison results since the
nonlinear joint constraint for zero injection ends up with a
wrong solution as explained in section IV-B.

Both MILP and NLP are effective ways to solve the
OPP problem, and each formulation has its advantages and
disadvantages. It is obvious that MILP formulation has less
computational time compared to NLP formulation as can be
seen from Table I. On the other hand, NLP formulation can
provide more than one optimal solution with the same cost
to the OPP problem.

VI. CONCLUSION

Mixed Integer linear programming formulation for the
OPP problem is presented for complete observability. Non-
linear programming formulation for the OPP problem is
demonstrated using sequential quadratic programming. NLP
can obtain more than one optimal solution to choose from
which is an advantage over the MILP formulation. More-
over, the sequential quadratic programming is used for the
OPP problem to minimize the number of PMUs as well
as maximize the redundancy measurements in the power
system. Several observability contingencies, which are power
flow measurements, zero injection, limited communication
facility, and single PMU failure, are discussed for both
approaches. The advantages and disadvantages of the two
formulations are presented.
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