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Abstract— The objective of the paper is to implement al-
ternative direction method of multipliers (ADMM) to solve a
nonconvex alternating current optimal power flow (AC OPF)
problem. There is no guarantee of convergence for ADMM
when it is applied to a nonconvex optimization problem. In
this article, we not only present the procedure of consensus
ADMM implementation on an AC OPF problem for IEEE
14-bus system but also present the results related to ADMM
parameters and convergence. The solutions from MATPOWER
and ADMM implementation are also compared.

Index Terms— AC OPF; ADMM

I. INTRODUCTION

AC OPF is a nonlinear and nonconvex optimization prob-
lem. The decision variables include generators’ real and
reactive power outputs and voltage magnitude and angle at
each bus. The objective function is usually the generation
cost and the constraints include equality constraints that
describe power injection relationship with voltage phasor and
inequality constraints that describe generator limits, voltage
limits, and line flow limits.

Alternating direction method of multipliers (ADMM) is a
simple powerful technique suited to solve distributed convex
optimization. In ADMM, we divide the main system into dif-
ferent sub-system called as area, and each area is coordinated
to find the final optimized solution. It is a attempt to blend
the benefits of Dual Decomposition method and Augmented
Lagrangian Methods for constraints optimization in ADMM
algorithm. The detail description on dual decomposition
and Augmented Lagrangian is discussed in [1]. In ADMM,
there are different algorithms, e.g., Gauss-Seidal, consensus
ADMM, and proximal Jacobian ADMM.

ADMM has been applied to solve AC OPF problems
[2]-[5]. In distributed AC OPF, the entire power grid is
separated into multiple regions and each region solves its
own optimization problem with the inputs from the other
region. The output from each region is used for updating until
convergence. For nonconvex optimization problems, there
is no guaranteed convergence for ADMM. Reference [2]
describes ADMM implementation for nonconvex AC OPF
problems and it shows that convergence only occurs under
certain conditions.

To have guaranteed convergence, AC OPF problems are
first relaxed to have convex optimization problems. In [3],
second-order cone program (SOCP) relaxation is applied to
relax the AC OPF problem for a distribution network. Such
relaxation is exact under milder assumptions for distribution
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tree networks. ADMM is then applied to solve the SOCP
relaxation problem. Reference [5] demonstrated consensus
ADMM and proximal Jacobian ADMM for DC OPF and
SOCEP relaxation of AC OPFE.

Another type of relaxation is semidefinite programming
(SDP) relaxation. In [6], [7], SDP relaxation is applied on a
nonlinear state estimation problem. ADMM is then applied
to solve the convex relaxation problems. The state estimation
problem has a different objective function than the AC OPF
problem. It does not have the inequality constraints imposed
but has the equality constraints that describe each bus’s
power injection.

The objective of this paper is to present how to implement
ADMM for nonconvex AC OPF. Though this topic has been
addressed in [2], the reference paper does not present a
tutorial approach of implementation. In addition, information
exchange among subsystems is not straightforward.

Our contributions include a tutorial presentation to show
how to separate the grid into subsystems and overlapping
areas, and how to implement consensus ADMM to find the
solution.

The rest of the paper is organized as follows. Section II
describes the details about the ADMM algorithm. Section
IIT describes about the implementation of consensus ADMM
for an AC OPF problem using IEEE 14-bus system as an
example system. In Section IV, case studies are presented.
Section V concludes the paper.

II. ADMM ALGORITHM
A. Standard ADMM

ADMM is an algorithm to solve distributed optimization
problem. Consider an optimization problem statement which
has an objective function consists of the sum of Gj(x) and
G2(2):

min Gy (x)+ G2(2) (D
xeccy,2€e0)
st. Ax=z

The augmented Lagrangian equation is defined as:

Lp(%,2,4) = G1(x) + Ga(2) + A" (Ax—2) + £ lAx— 2]
2
where p > 0 is called the penalty parameter. The augmented
Lagrangian method is developed in part to bring robustness
to the dual ascent method, and in particular, to yield conver-
gence without assumptions of strict convexity or finiteness
of objective function G [1], [2].
To search the optimal point, it is performed via an alternat-
ing procedure which starts from initial values zg and Ag, and



iteratively updated according to eq. (3) until convergence.
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Finally, the ADMM iteration should converge to the fol-
lowing results.

Axk —Zk 0
lim |G (x*)+ Gy ()| = | v (4)
k—roo Ak )'*

where v* is the optimal value of the objective function, and
A” is the optimal dual variable.

B. Consensus ADMM for OPF

Consensus ADMM is a special form of ADMM. Consider
an optimization problem given below:

min i fi(xi)
i=1

st. xj=z, i=1,---.m 5
where ; notates variables in Area i. It is called global
consensus algorithm, since at convergence all the local
variables should be equal to global variable. The augmented
Lagrangian function can be derived for the problem (3)) as
below,

m

Loz, A) = Y (fix) + AT (x5 —2)+ 2 xi— 2]3)

i=1

Ly,
(6)
Thus, the common global variable z is solved by collabo-
rative filtering in (7).

X —argmin Ly (xi, AL 2, i=1,---m  (7a)
X;
1 1 mxk+1
z m,; ; (7b)
lfﬂzlf—kp(xfﬂ—zk“L i=1,-,m (7¢)

For details refer to [1], [5].

In this paper, we will adopt consensus ADMM to solve a
nonconvex AC OPF problem. Each area only need to handle
its own objective function and constraints for a given global
ZF. All the areas update their decision variables in parallel
till convergence.

III. ADMM FORMULATION FOR AC OPF

In this section, we will present the ADMM formulation for
an AC OPF problem related to the IEEE 14-bus system. The
distribution topology of IEEE 14-bus is shown in Fig.[T} Each
bus has their own load. There are three transformers between
bus 5 and 6, bus 4 and 9, bus 4 and 7, respectively. Five
generators are connected on bus 1, 2, 3, 6 and 8, respectively.

Fig. 1: IEEE 14 bus partition into 2 areas. The dash lines
denotes the boundary of each areas and the buses enclosed
in each area.

A. AC OPF Statement

Each bus number is marked as i, where i = 1,2,...14.
Let Y be the branch admittance matrix, V; and I; represent,
respectively, voltage and current injection at bus i. The net
power injection at the bus i can be expressed as follows:

*
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where [; is derived by ¥;; and V; in (9), G is the bus con-
ductance matrix, G;; = Re(Y; j) and, B is the bus susceptance
matrix, B;; =Im(Y;;) and Y is the bus admittance matrix.

L=YY;V; ©)
J

The AC OPF problem can be formulated as a minimization
of the summation of individual polynomial cost functions fp,,
and fp,, of real and reactive power generation, respectively,
for each generator on the following buses (1,2,3,6,8), shown
in (10).

The optimization variables x in (II) consists of 5 x 1
vectors of generator real and reactive power generations P,



and Q,, and 14 x 1 vectors of voltage magnitudes V and
angles 0.

min})_ fp(Py,) + fo(Qi), (10)
Pg
x= %’ (11)
6
s.t &ngigﬁg, (12a)
Qqi < Qi < Qyi (12b)
Vi<V, <Vi (12¢)
6,<6,<6; (12d)
Pgl-dei—I’,-(V,B) =0 (126)
Qi —Qui — Qi(V,0) =0 (121)

The inequality constrains eqs. (I12a) to (I2d) give the upper
and lower bounds for generator real power, reactive power,

all bus’s voltage magnitudes and angles.

The equality constrains egs. and are from
power injection equations (8b) and (8c)), which including real
and reactive components, expressed as functions of V, 6 and
generator generations P, and Q. The load demand F; and
Q4 at each bus is assumed constant and are given in the
MATPOWER [8] input file. The AC OPF is a nonconvex op-
timization problem due to the nonlinear equality constraints
related to power injections.

B. ADMM Implementation

The IEEE 14-bus network is shown in Fig. [I] It has 5
generator buses and 9 load buses. The network is partitioned
into 2 areas: Area A and Area B. In the figure, the area
enclosed with red dotted line is the intersection area called
as consensus area or overlapping area. Area A includes
buses 1-5, the branches inside this area as well as the
branches in the consensus area (4-7, 4-9, and 5-6). Area
B includes buses 6-14, branches inside Area B as well as
the branches 6-5, 7-4, and 9-4. Each area decides its own
buses’ voltage magnitudes, phase angles as well as real and
reactive power of its generators inside the area. Area A treats
the buses belonging to Area B in the overlapping area as
voltage sources and decides their voltage magnitudes and
phase angles. Power injection equality of those buses (bus
6, 7, 9) will not be considered. Area B treats the buses
inside the overlapping area but belonging to Area A as the
boundary buses (bus 4 and bus 5). For its own buses, power
injection equations will be imposed as equality constraints
while considering bus 4 and 5 as two voltage sources.

Both areas will decide the voltage magnitudes and phase
angles for the buses in the overlapping area. Thus, voltage
phasors of those buses (4, 5, 6, 7, 9) will be treated as the
local variables to achieve consensus. Below is a detailed list
of each area’s information and consensus area’s information.

e Area A:
— Its own buses: 1-5.

— Boundary buses: 6, 7 and 9.
— Branches: 1-2, 1-5, 2-3, 2-4, 2-5, 3-4, 4-5, 4-7. 4-9,
5-6.
« Area B:

— Its own buses: 6-14.
— Boundary buses: 4 and 5.
— Branches: 6-11, 6-12, 6-13, 7-8, 7-9, 9-10, 9-14,
10-11, 12-13, 13-14, 5-6, 4-7, 4-9.
o Consensus Area:
— Consensus buses: 4, 5, 6, 7, 9.

Based on the partition of the area, the decision variables
for each area will be defined. We define the variables which
belong to area A as (.)4 and the variables which belong to
area B as (.)p. And we define the bus variables as (.)¥ where
i is the bus number and k denotes the number of iterations.

Let x4 and xp be the decision variables for area A and B
respectively, where,

T
Xa = [Poa Qe Viy w0 Vi, Vo, By, - 07, B, |7 (130)
T
x5 =[Pen Qe Vay +++ Viay Oy -+ Oray | (13b)
where Pos = [Po1,Pp2,Pe3], Qea = [Qg1,Q¢2, Qg3 Pep in-

cludes [Pyq,Pgg], and Qgp includes [Qgs, Ogs).
z denotes the vector of the consensus variables:

z=[Va Vs Vo Vi Vo 64 65 65 6 99]T- (14)

The global variable z is initialized with the default value of
V and 6. The parameter p is considered as 20 initially. The
lower bounds and upper bounds of the objective variables,
as in (12a)-(12d), are defined based on MATPOWER’s input
file. The dual variable vectors are defined as A4 and Ay for
area A and area B respectively.

The global variable vector z is related with consensus local
variable x.4 and X.g: X;a = 2, Xcp = 2.

1) Area A: The objective function for Area A is as follows

LoaGea 25 = ¥ fuPu) + (A0 (ra—2)+ 5|
i=1,2,3 as)
Inequality constraints include the following.
s.t. @ngigj, i=1,...,3 (16a)
Qi <00 < Qi i=1,...,3 (16b)
Vi<Vvi<V, i=1,...,7,9 (16¢)
ége,-gﬁ,-, i=1,...,7,9 (16d)

Equality constraints including the following.
Pgi — PD,- = ZV,'V/(G,’] COS(@,’ — Gj) —I-B,'j Sil‘l(e,' — 9]))
(17a)
Qg —Op, = ZV,'V]'(G,'J' sin(6; — 91') 7BijCOS(9,' — 91))
(17b)
i=1,...,5
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2) Area B: The objective function for Area B is as follows

Lo (xp,2", A%) Z fri(Pyi) ApT (ch—Zk)-f-g‘ch—z
i=6,8 18)

Inequality constraints include the following.
s.t. P < Py <P, i=6,8 (19a)
Qui < Qgi < Qqi, i=6,8 (19b)
Vi<Vi<V, i=4,...,14 (19¢)
ége,g@, i=4,..,14 (19d)

Equality constraints including the following.

Py, — Pp, = Y ViVj(Gijcos(6; — 0;) + Bijsin(6; — 6;))

(20a)
le. — QDi = ZVI’V/(GU sin(G,- — 61) —BijCOS(ei — 9/))
(20b)
i=6,...,14

At each iteration step k, for a given 2, ).ﬁ and lg, Area A
finds the optimal solution xﬁ“ and Area B finds the optimal
solution x’g“. The update process for the decision variables
based in the consensus ADMM are as follows:

zk+1 ;( k+1+xk+l) (21a)
l/]g“rl )tA+p( k+1 Zk+1) (21b)
)'];;’l )’B+p( k+1 zk+1) (21C)

IV. CASE STUDY

The pseudocode is presented in Algorithm [I} Matlab
function fmincon is used to solve each area’s optimization
problem.

Algorithm 1 Pseudocode for ADMM

1: procedure MAIN PROGRAM

2 Initialize p.

3: Initialize x40 and xpo for area A and area B.

4 Initialize the lower bound and upper bound for the
decision variables.

Initialize the threshold error value

while err < threshold error do

5

6:

7: Area A:

8 Ob j, < Objective function of area A

9: X4, < Output from fmincon > solves Objs
10: Area B:

11: Ob jp +— Objective function of area B

12: xg,,, < Output from fmincon > solves Objp
13: Update x"Jrl X,

14: Update x5! « x3,,

15: Update z’“rl — Avg( PR A

16: Update A5 /'lA +p = ( AL gkt

17: Update ).k“ A+ pr(a £ —Zkh)

18: end while

19: end procedure

|

To illustrate convergence of the consensus ADMM, the
norm of the error |[x¥ —z¥|| was calculated and the dual
2variables A4 and Ap are plotted versus the iteration steps.
,Along with dual variable, the decision variables P, Q,, V
and O are also plotted.

We did test for three different scenarios to check the
robustness of the consensus ADMM optimization algorithm.

o Scenario 1: We assume that the costs of generation are

all zero.

o Scenario 2: The cost of each generator is assumed to be

linear cost.

o Scenario 3: The cost of each generator is quadratic using

the same cost function as the MATPOWER input file
casel4.m.

A. Scenario 1: Zero generation cost
Fig. 2] resents the outputs for Scenario 1. The figure shows
convergence for all variables. This case is tested for p = 20.
B. Scenario 2: Linear cost
The cost function equation of a power system network is
stated as (22).
f(Pgi) = chipgi +C2inZ,-

where Cy, is the linear cost coefficient and C, is the quadratic
cost Coefficient. In Scenario 2, C, is changed to zero.

Therefore,
Pgt) = chipgi

Fig. [3] presents the outputs with a linear cost function. In
this case, the penalty parameter p is 20 and the system is
converging for this p. We calculated the minimum generation
cost at p =20, and it was found to be 5383 $/hr.

(22)

(23)

C. Scenario 3: Quadratic cost

A quadratic cost function for a power system network is
shown as in (22).

In this case, tests were conducted with different ps. The
outputs in Fig. @] shows that when p is small, ADMM is not
converging.

TABLE I: MATPOWER and ADMM Comparison

Generations MATPOWER | ADMM | Error
Pgi(MW) 194.33 194.30 -0.03
Qg1 (MVar) 0 0 0
Pgr(MW) 36.72 36.71 -0.01
Qgr(MVar) 23.69 23.52 -0.17
Pg3(MW) 28.74 28.74 0
Qga(MVar) 24.13 24.27 0.14
Pgs(MW) 0 0 0
Qge(MVar) 11.55 11.49 -0.06
Pgs(MW) 8.49 8.47 -0.02
Qgg(MVar) 8.27 8.23 -0.04
Minimum Cost ($/hr) 8081.5 8079.3 2.2

Next p is increased to 100,000 and ADMM is converging.
The outputs are plotted in Fig. [5] The outputs show that all
variables are converging. The converged values are compared
with MATPOWER s solution as shown in Table[ll The results
from ADMM are similar as those from MATPOWER.
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Fig. 2: Scenario 1: Zero generation cost. p = 20.
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Fig. 3: Scenario 2: Linear generation cost. p = 20.
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Fig. 4: Scenario 3: Quadratic cost. p =20
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Fig. 5: Scenario 3: Quadratic cost. p = 100,000.

Remarks: We have demonstrated the performance of fully choosing p results in a solution same as that from
ADMM for nonconvex AC OPF. Depending on the penalty MATPOWER.
parameter p, the algorithm may or may not converge. Care-



V. CONCLUSION

ADMM is implemented in this paper for a nonconvex

AC OPE. The consensus ADMM algorithm is applied to
IEEE 14-bus system to solve an AC OPF problem. Different
scenarios are carried out to test our methodology. Based
on the output of the case studies, we can conclude that
a nonconvex optimization problem will not always present
a stable converged output. Ability to achieve a converged
solution depends on the tuning penalty parameter p.
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