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Abstract—It has been known that the second-order conic pro-
gramming (SOCP) relaxation of an alternating current optimal
power flow (AC OPF) problem is a computationally friendly for-
mulation, while the semi-definite programming (SDP) relaxation
is a theoretically stronger one. This paper presents a method
to strengthen the (SOCP) relaxation by generating new cutting
planes, i.e., valid inequalities, using SDP relaxation, which remove
SOCP solutions that are infeasible to SDP formulation. This new
method relies on solving a least square estimation (LSE) problem
for every cycle in a cycle basis. General feasibility cutting plane
method is also employed for cuts generation. We show that the
SDP cuts generated by the LSE method are indeed feasibility
cuts. Numerical results show that those new cuts can effectively
reduce the search space and lead to a tighter relaxation. The
new cuts are comparable to the SDP cuts in [1]. Case studies on
systems with several buses to thousands buses have demonstrated
the method is also scalable.

Index Terms—SOCP, SDP, AC OPF, Least square estimation

I. INTRODUCTION

COnvex relaxation has been applied to AC OPF to obtain a
strong solution within polynomial solving time. Among

them, SDP relaxation have been applied in AC OPF first
in [2]. Lavaei and Low showed that SDP relaxation of AC
OPF provides a tight bound [3]. It has also been shown
that moment relaxation [4]–[6] enables the application of
the Lassere hierarchy for polynomial optimization problems.
The first-order moment relaxation is equivalent to the SDP
relaxation in [3]. The disadvantage of SDP relaxation of
AC OPF is that it has scalability issues as demonstrated by
computing experiments in [7].

Therefore, other types of convex relaxations with computing
efficiency have been proposed, e.g., linear programming re-
laxation [8], quadratic programming relaxation [9], and SOCP
relaxation [7], [10]. In particular, the latter one has demon-
strated a great potential to achieve a desired trade-off between
the tightness of relaxation and the computational advantage
[1], [7]. Nevertheless, the standard SOCP relaxation does not
take care of the meshed network cycle constraints (i.e., sum
of the voltage angle differences across a cycle is zero). Most
recently, [1] presents three approaches to strengthen SOCP
relaxation of AC OPF. Note that the feasible region of SDP
relaxation is contained inside the feasible region of the SOCP
relaxation [1], [9]. So, one of those approaches is to generate
valid homogeneous inequalities to reduce the search space by
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excluding an SOCP relaxation solution that is infeasible to the
SDP relaxation. Such valid inequalities, i.e., cuts, are named
as SDP cuts. This approach shows it can produce relaxations
with smaller gaps compared to other two approaches in [1].

A similar idea regarding SDP cuts can be found in [11],
where nonlinear inequalities are generated to represent SDP
cuts for SOCP relaxation problems. The inequalities are based
on the matrix determinant. The method in [11] can be applied
to large networks by exploiting sparsity using the branch
decomposition.

Compared to nonlinear inequalities, linear or affine inequal-
ities will have computational advantages for large-size net-
works. In this paper, we will propose a least square estimation
(LSE)-based method to generate a new type of SDP cuts
that are affine inequalities. We then compare the LSE-based
method with the general feasibility cutting plane method [12]
and show that those two approaches generate the same cuts.
On instances of different scales, we observed that our method
is comparable to the SDP separation method in [1].

The rest of the paper is organized as follows. Section II
presents AC OPF relaxations. Both SOCP and SDP relaxations
are presented. The SDP separation method presented in [1] is
examined in details. Section III presents the proposed LSE
method and feasibility cut method. Section IV presents case
study results and Section V concludes the paper.

II. AC OPF RELAXATIONS

AC OPF is formulated as an optimization problem with the
objective function as the cost of generation or power loss,
equality constraints representing the relationship of bus power
injection versus bus voltage magnitudes (notated by a vector
V ∈ R|B|, where B is the set of the buses in the system and |.|
notates the cardinality of a set) and phase angles (θ ∈ R|B|),
and inequality constraints representing voltage limits, line flow
limits, generation limits, etc [13]. The set of the branches are
notated as L.

The decision variables of AC OPF are voltage magnitudes
V , phase angles θ, and generators’ real and reactive power
outputs, notated as P gi , Qgi , where i ∈ G, and G ⊆ B is the
subset of the buses.

Given the system admittance matrix Y = G+jB, the power
injection at every node can be expressed by V and θ.

P gi − P
d
i =

∑
j∈δi

ViVj(Gij cos(θi − θj) +Bij sin(θi − θj))

Qgi −Q
d
i =

∑
j∈δi

ViVj(Gij sin(θi − θj)−Bij cos(θi − θj))
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where superscript g notates generator’s output and d notates
load consumption, δi is the set of the buses that are directly
connected to Bus i through branches.

The mathematical program is shown in (1).

min
∑
i∈G

fi(P
g
i ) (1a)

s.t. P gi − P
d
i − Pi(V, θ) = 0, i ∈ B (1b)

Qgi −Q
d
i −Qi(V, θ) = 0, i ∈ B (1c)

|Sij(V, θ)| − SMij ≤ 0, (i, j) ∈ L (1d)

V mi ≤ Vi ≤ VMi , i ∈ B (1e)

P gmi ≤ P gi ≤ P
gM
i , i ∈ G (1f)

Qgmi ≤ Qgi ≤ Q
gM
i , i ∈ G (1g)

where f(.) is the cost function, superscript M denotes
upper bound and m denotes low bound, P di , Q

d
i are the real

and reactive power load consumption at Bus i, Pi(V, θ) and
Qi(V, θ) are Bus i’s power injection expressions in terms of
bus voltage magnitudes and phase angles, and Sij(V, θ) is
the complex power flow from Bus i to Bus j on the branch
connecting the two buses. The decision variables consist of
P gi , Q

g
i , i ∈ G, V , and θ. The dimension of the decision

variable vector is 2|G|+ 2|B|.
Note that the equality constraints of power injections are

non-convex in terms of V and θ. Relaxations have been
developed in the literature to have a convex feasible region.
These methods deal with new sets of decision variables to
replace V and θ.

A. SOCP relaxation

In SOCP relaxation [10], a new set of variables cij and sij
is used to replace the voltage phasors Vi∠θi, i ∈ B, where B
is the set of buses in a power network.

cii = V 2
i , cij = ViVj cos(θi − θj)

sii = 0, sij = −ViVj sin(θi − θj) (2)

where cij = cji and sij = −sji.
It is easy to find the following relationship:

c2ij + s2ij = V 2
i V

2
j = ciicjj . (3)

The AC OPF problem’s power injection constraints are
linear in terms of cij and sij .

P gi − P
d
i =

∑
j∈δi

(Gijcij −Bijsij),

Qgi −Q
d
i =

∑
j∈δi

(−Gijsij −Bijcij).
(4)

There will be |L| number cij and sij to be defined as
decision variables. If there is no direct connection between
Bus i and Bus j, the power injection equations will not contain
cij nor sij . The decision variables V and θ are now replaced
by cii, i ∈ B, and cij , sij , (i, j) ∈ L. The dimension of the
new set of the variables is |B|+ 2|L|.

In addition, (3) will be relaxed as a second-order cone:

c2ij + s2ij ≤ ciicjj . (5)

This relaxation is first proposed in [10] for AC OPF and named
as SOCP relaxation.

Research work has been conducted in this area and sufficient
conditions for SOCP relaxation being exact are also found [7],
[14]. In spanning tree power networks, under a mild condition
(e.g., voltage upper bounds not binding), SOCP relaxations
are exact [7]. For meshed networks, SOCP relaxation is not
exact since the following constraint is not considered in SOCP
relaxation:

tan(θi − θj) = −
sij
cij

(6)

For a cycle C, the angle constraint is as follows∑
(i,j)∈C

θij = 2πk, for some k ∈ Z. (7)

Without imposing cycle constraints (6) and (7), it is possible
to end up with cij , sij that violate the cycle constraint. In that
case, the solution from SOCP relaxation is infeasible to the
original AC OPF problem.

To solve this issue, in [15], Jabr proposed linear approx-
imation for (6). This method requires iteration. In addition,
feasible points could be lost due to the imposed linear con-
straint. Kocuk et al proposed three methods in [1], including
McCormick based linear programming relaxation and separa-
tion, SDP separation, and arctangent envelopes to deal with
the cycle constraints. In [1], the authors claim that the SDP
separation works the best in term of providing tight gaps. The
SDP cuts in [1] are represented by linear inequalities.

In this article, we will examine the SDP separation in [1]
and develop SDP cuts using least square estimation (LSE). As
a first task, the relationship of the decision variables of SOCP
relaxation (cii, cij , sij) and those in SDP relaxation will be
examined.

B. SDP relaxation

In SDP relaxation, rectangular expressions are used to
represent the voltage phasors.

Vi = Vi∠θi = Vi cos θi︸ ︷︷ ︸
ei

+j Vi sin θi︸ ︷︷ ︸
fi

(8)

A matrix W is defined as follows

W =

[
e
f

] [
eT fT

]
(9)

where f = (f1, f2, · · · , fn)T , e = (e1, e2, · · · , en)T , n = |B|.
It is obvious to find the following characteristics:

W =WT , W � 0, and rank(W ) = 1. (10)

W � 0 means that this matrix is positive semi-definite (PSD).
The power injection constraints will be shown to be linear

with the elements of W . Define

i′ = i+ |B|, j′ = j + |B|, (11)
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where |.| notates the cardinality of a set.

P gi − P
d
i =

n∑
j=1

(Gij(Wij +Wi′j′) +Bij(Wji′ −Wij′))

Qgi −Q
d
i =

n∑
j=1

(Gij(Wi′j −Wij′) +Bij(Wij +Wi′j′))

(12)
The above expressions indicate that the equality constraints

of power injection are linear in terms of W . If the cost function
is quadratic to P g , then the cost function is quadratic to the el-
ements of W . Without the rank 1 constraint rank(W ) = 1, this
problem is a convex problem and a semi-definite programming
(SDP) problem.

The SDP relaxation of AC OPF is first introduced in [2].
The decision variable for SDP relaxation is W ∈ R2|B|×2|B|,
P gi and Qgi for i ∈ G. For large-scale networks, the size of W
becomes large which makes computing cost of SDP relaxation
increase significantly.

C. Relations of SOCP and SDP decision variables

In SDP relaxation of OPF, W is treated as a decision
variable and W should be PSD. For SOCP relaxation of
OPF, the decision variables are cii, cij and sij . The following
relationship should hold:

cij = eiej + fifj =Wij +Wi′j′ , (13a)
sij = eifj − ejfi =Wij′ −Wji′ , (13b)

cii = e2i + f2i =Wii +Wi′i′ . (13c)

For every cij , sij and cii, we can express them to be the
Frobenius product related to the (PSD) matrix W : zl = Al•W ,
where • denotes Frobenious product.

D. SDP separation in [1]

Research in [1] indicates that once a solution vector z is
found after solving the SOCP relaxation of OPF, this z should
be examined. If z is in the set that can be connected with
a PSD W as shown in (13), then z is a solution of SDP
relaxation. Otherwise we should create inequalities as cuts.
(13) is further expressed as (14) for each chordless cycle in
the power network. W̃ is the corresponding W for this cycle.

S :=
{
z ∈ R3|C| : ∃W̃ ∈ R2|C|×2|C|

s.t. − zl +Al • W̃ = 0 ∀l ∈ L, W̃ � 0
}
,

(14)

where C is a cycle, and L is the index set for all equalities,
including buses and lines in this cycle. In a chordless cycle, the
number of branches equals the number of nodes. Therefore,
the dimension of z should be 3|C|. For example, for a three-
bus system with three branches connecting every two buses,
the dimension of L is 3|C| = |B|+ 2|L| = 9.

The method to create cuts in [1] is shown as follows. For
a given z∗, the separation problem over S can be written as

follows,

v∗ := min
α,λ

− αT z∗ (15a)

s.t.
∑
l∈L

λlAl � 0 (15b)

α+ λ = 0 (15c)
− e ≤ α ≤ e. (15d)

If v∗ < 0, that means z∗ is infeasible to S. The cut generated
should be αT z ≤ 0.

The principle that leads to the above optimization problem
was briefly mentioned in [1] as SDP duality. In this article,
we give a detailed explanation of the principle used in [1].

Based on SDP duality [16], the following two problems are
dual problems.

Primal problem:

min
X

C •X

s.t. Ai •X = bi,

i = 1, · · · ,m
X � 0

Dual problem:

max
y

yT b

s.t.

m∑
i=1

Aiyi � C

(16)
where Ai, i = 1, · · · ,m and C are symmetric matrices, b ∈
Rm.

(14) can be written in a format similar as the primal problem
as shown in (17) and its dual problem can also be found, as
shown in (18).

Primal problem:

p∗ = min
W̃

0 • W̃

s.t. Al • W̃ = z∗l ,

l ∈ L
W̃ � 0

(17)

Dual problem:

d∗ = max
α

αT z∗

s.t.
∑
l∈L

αlAl � 0

(18)

If z∗ ∈ S, then the primal problem is feasible and the value
of the primal problem p∗ = 0. Based on weak duality, the
value of the dual problem d∗ ≤ p∗ = 0. If z∗ is not a SDP
feasible solution, then d∗ > 0. This also translates to v∗ =
−d∗ < 0 when z∗ is infeasible.

Remarks: An important assumption used to create the min-
imization problem in (15) is that matrices Al, l ∈ L should be
symmetric. If we build those matrices based on (13) directly,
the resulting Al matrices are not symmetric. This will cause
the minimization problem (15) to have a value always zero
and the resulting vector α is always zero.

Since W̃ is a symmetric matrix, we can construct Al to be
symmetric. For example, let

cij =Wij +Wi′j′ =
1

2
(Wij +Wji +Wi′j′ +Wj′i′).

This operation makes sure that the Al constructed will be
symmetric.

An alternative intuition is also given. The sufficient and
necessary condition for a matrix A ∈ Rn×n is PSD is for all
B ∈ Rn×n and B � 0, A •B ≥ 0 [17].

The objective of the SDP separation in [1] is find a vector
α that can make αT z∗ > 0 if z∗ /∈ S while it can make
αT z ≤ 0, where z ∈ S . Since the SDP feasible region is a
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closed convex cone, such a homogenous separation hyperplane
always exists ( [6], chapter 4, pp. 51).
The constraint can be further written as

αT z =
∑
l

αlzl = (
∑
l

αlAl) • W̃ ≤ 0, where W̃ � 0.

The sufficient and necessary condition for the above relation
to be true is to have

−
∑
l

αlAl � 0.

Therefore, the cut creation can be written in the same format
as shown in (15).

max
α

αT z∗

s.t. −
∑
l

αlAl � 0
(19)

The value of the above maximization should be greater than
zero for z∗ /∈ S.

III. GENERATING SDP CUTS

A. Generating SDP Cuts based on Least Square Estimation

In this subsection, LSE based method is used to find new
SDP cuts. Suppose we have a given z0 (z0 can be obtained
after solving the SOCP relaxation of AC OPF) and the SDP
feasible set is S . We would like to generate cuts to get rid of
z0 and reduce the search space. We use the following method
as shown in Fig. 1.

S

z0

z*

αT(z-z0)=0

S

z0

z*

αTz=0

S
z0

αTz=0

S

z0

z* αT(z-z0)=0

αT(z-z*)=0

Fig. 1. z∗ is z0’s projection to S. The vector (z0−z∗) can be used to create
a cut. The cut generated will be (z0 − z∗)T (z − z∗) ≤ 0.

First, we will find the shortest distance from z0 to the set
S , z∗ is the corresponding point found in S. The we generate
a line that is orthogonal to z0 − z∗. Due to the orthogonality,
the vector z − z0 for any z located on the line, is orthogonal
to the vector z0 − z∗. Therefore, their inner product is zero.

(z0 − z∗)T (z − z0) = 0 (20)

for any z located on the line. Hence this line is defined as
αT (z − z0) = 0, where α is (z0 − z∗).

The set S is now located at the left of the line. Therefore
the cut is generated as

αT (z − z0) ≤ 0, (21)

where z is the variable.
The task left to us is to find z∗. This can be done through

minimizing the distance from z0 to z where z ∈ S. The
formulation is as follows.

min
z

‖z0 − z‖2 (22a)

s.t. zl = Trace(AlWT ), for all l ∈ L (22b)
W � 0 (22c)

where L the the index set including buses and branches. The
optimal solution is notated as z∗.

If the norm of z0− z∗ is zero, that means z0 belongs to the
SDP set S and α = 0 or no cuts will be generated.

The cut generated by (21) is a neutral cut [12], i.e., when
z = z0, αT (z − z0) = 0. z0 still belongs to the search space.
To have a deep cut so that z0 will be excluded from the
search space or the feasible region, we will use z∗, the optimal
solution from (22) to generate cut. The cut is expressed as
follows.

αT (z − z∗) ≤ 0 (23)

where z is the decision variable vector.
(22) requires to find a W of a large size. To alleviate the

computational burden, we follow the strategy presented in [1]
to consider a small-size one constructed using cycle basis. For
every cycle in the cycle basis of the network, we will solve a
minimization problem (22) and generate a cut if the solution
z0 generated by SOCP relaxation is not in the feasible region
of the SDP relaxation. Cycle basis identification algorithm in
[18] is used to identify the cycle basis.

B. Generating SDP Cuts based on feasibility cuts

We further examine how to generate feasibility cuts for
a given infeasible decision variable. The basic concept of
feasibility cut [12] is first described. Then we examine the
feasibility problem presented in (14).

For an inequality constraint f(x) ≤ 0, where x ∈ Rn and
f : Rn → R is a convex function, notate the feasible region as
X . If x is not feasible and makes f(x) > 0, we can find the
following relationship based on the convexity of the function
f :

f(z) ≥ f(x) + gT (z − x) (24)

where g is a gradient or subgradient. Any feasible z should
satisfies the inequality f(z) ≤ 0. Therefore, we can generate
a deep cut as

0 ≥ f(z) ≥ f(x) + gT (z − x) (25)

⇒f(x) + gT (z − x) ≤ 0 (26)

where z is the decision variable, x is given.
For the feasibility problem described in (14), we will first

come up with an inequality constraint. Note that if z is
infeasible, then the following relationship is true.√∑

l

(zl −Al • W̃ )2 > 0 (27)
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for some PSD W̃ .
For a feasible z, then√∑

l

(zl −Al • W̃ )2 ≤ 0, (28)

for some PSD W̃ .
The inequality constraint is identified as

f(z) =

min
W̃

√∑
l

(zl −Al • W̃ )2

 ≤ 0, (29)

for some PSD W̃ .
The above inequality can be further written as

f(z) =

{
min
W̃

‖z − z∗‖2
}
≤ 0 (30)

where z∗l = Al • W̃ , l ∈ L and W̃ � 0.
If z0 is infeasible, the feasibility cut should be

gT (z − z0) + f(z0) ≤ 0 (31)

where g is the gradient. The gradient of f(z) can be found as:

g(z) =
∂f

∂z
=

z − z∗√
(z − z∗)T (z − z∗)

(32)

Evaluated at z0, g(z) becomes

g(z0) =
∂f

∂z
=

z0 − z∗√
(z0 − z∗)T (z0 − z∗)

=
z0 − z∗

f(z0)
(33)

Therefore the feasibility cut is

gT (z − z0) + f(z0) ≤ 0

⇒(z0 − z∗)T (z − z0) + (z0 − z∗)T (z0 − z∗) ≤ 0

⇒(z0 − z∗)T (z − z∗) ≤ 0 (34)

Using feasibility cut, we have successfully proved that the
LSE-cut is indeed a feasibility cut.

C. Implementing procedure

The cuts will be generated for a solution from SOCP
relaxation. They will then be added as inequality constraints
for the SOCP problem. With the new SOCP problem solved,
a new solution is obtained and it is then examined for new
cut generation. Modified with a set of cuts, the new SOCP
problem will be solved again for next iteration, until no cuts
will be generated or iteration limit is reached.

IV. CASE STUDIES

All computations are conducted in MATLAB. MATPOWER
[19] is used to find upper bound while CVX toolbox [20]
and MOSEK 7.1 solver [21] are used to carry out convex
programming problem solving. Cycle basis is identified using
the algorithm in [18]. We have implemented the proposed LSE
algorithm and the SDP separation algorithm of [1].

A. Three-bus test system

This test case comes from NESTA v0.4.0 archive [22]. The
system is a three-bus system consisting of one cycle. After
five iterations, five SDP cuts are added to the SOCP problem.
The solution from SOCP relaxation of AC OPF is now SDP
feasible. Table I lists the gap before adding SDP cuts and
after adding SDP cuts. The objective function value of the
minimization problem that generates SDP cuts stands for the
distance from z0 to the SDP feasible region S of a cycle in the
cycle basis. Fig. 2(a) shows the distance for ten iterations. It
can be seen that after a few iterations, the strengthened SOCP
solution z0 is in the SDP feasible region S.

TABLE I
PERCENTAGE GAP OF A 3-BUS CASE

Test case MATPOWER ($/h) SOCP SDP cuts
nesta case3 lmbd 5812.6 1.67 1.27
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(a) LSE algorithm
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nesta_case3_lmbd.m

(b) Algorithm in [9]

Fig. 2. Three-bus test case. This system has one cycle. (a) z0 to S distance
over iteration; (b) the value of (20) of the separation algorithm in [1].

As a comparison, we also presented the objective function of
the minimization problem (20) used in [1] over iterations. We
can see that the two algorithms have comparable performance.

B. Five-bus PJM system

This test case also comes from the NESTA archive. The
topology is shown in Fig. 3. The five-bus system has two
cycles in its cycle basis. The first cycle consists of buses 1, 2,
3, 4 and branch 1, 2, 4, 5. The second cycle consists of buses
1, 4, 5 and branches 2, 3 and 6. At each iteration, two cuts
will be generated. After five iterations, the gap reduces from
14.48% to 9.08%.

TABLE II
PERCENTAGE GAP OF A 5-BUS CASE

Test case MATPOWER ($/h) SOCP SDP cuts
nesta case5 pjm 17552 14.48 9.08

Fig. 4(a) gives the plots of the distances of each cycle’s z0
to the SDP feasible region over iterations. Fig. 4(b) gives v∗
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Fig. 3. Five-bus test case with two cycles in its cycle basis. Cycle 1: nodes
1, 2, 3, 4, branches 1, 2, 4, 5; Cycle 2: nodes 1, 4, 5, branches 2, 3, 6.
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(b) Algorithm in [9]

Fig. 4. Five-bus test case. This case has two cycles in the cycle basis. (a) z0
to S distance over iteration; (b) the value of (20) of the separation algorithm
in [1].

of (20) using the method in [1]. The performance of the two
methods are comparable.

C. 30-bus test case

NESTA’s IEEE 30-bus system has been reported in [1],
[9] to have a large gap for SOCP relaxations and quadratic
relaxations. This system has 12 cycles in its cycle basis. SOCP
relaxation gives a set of decision variables. With the set, 12
minimum distance problems are solved and 12 SDP cuts are
generated. The SCOP problem with 12 cuts is solved again and
the gap is reduced significantly to 1.71%. After five iterations,
the gap is reduced to 0.29%. Fig. 5(a) gives the 12 distances
over iteration. Fig. 5(b) gives the 12 values over iteration using
the method of [1]. For this instance, the method of [1] shows
better performance: in five iterations, the objective functions
of (20) become zero while the distances are still not zero.

D. Comparison of the LSE method, SDP duality method in
[1]

The proposed LSE method is compared with the SDP
separation method in [1]. Table III shows the optimality gap
and computing time for the two methods. We can see that the
performance of the two types of SDP cuts are overall similar.
Computing time is also at the same scale.
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Fig. 5. 30-bus test case. This case has 12 cycles in the cycle basis. (a) z0 to
S distance over iteration; (b) the value of (20) of the separation algorithm in
[1].

E. More Computational Results

For the 3-bus instance and the 5-bus instance, we have
increased the iteration time to be 50 and examined the sum
of distances related to cycles in the cycle basis. The sums of
distances are shown in Fig. 6. We see exponential decrease
in the sum of distances within 20 iterations. This indicates
that SOCP solution may eventually be feasible for the SDP
problem after a sequence of SDP cuts.
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Fig. 6. Sum of distances over iterations of the 3-bus system and the 5-bus
system.

A number of Nesta cases have been tested and the results
are listed in Table IV. Gaps are compared for SOCP relaxation
and SOCP relaxation with LSE-based SDP cuts.

Remarks: For all the case studies, we have shown the
effectiveness of gap reduction after adding SDP cuts to the
SOCP relaxation problems.

Computing Complexity
The computing time for SOCP relaxation problem solving

and SOCP relaxation with SDP cuts is also given. All cases
except the 2224-bus case were solved for five iterations for
the enhanced SOCP relaxation with SDP cuts.
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TABLE III
COMPARISON OF OPTIMALITY GAP PERCENTAGE AND RUNTIME RESULTS OF LSE METHOD, SDP DUALITY METHOD, AND THE COMBINATION OF TWO

CUTS. Al IS SYMMETRIC.

SOCP with SDP cuts over iterations runtime (s)
case UB ($/hr) gap SOCP 1 2 3 4 5 min gap SOCP with Cuts

LSE method
nesta case3 lmbd.m 5812.64 1.67 1.31 1.27 1.27 1.27 1.27 1.27 0.54 3.68

nesta case4 gs.m 156.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32 2.53
nesta case5 pjm.m 17551.89 14.48 14.19 11.45 9.17 9.12 9.08 9.08 0.41 3.58
nesta case6 ww.m 3119.26 0.13 0.09 0.02 0.02 0.02 0.02 0.02 0.59 6.92

nesta case9 wscc.m 5296.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.56 4.15
nesta case14 ieee.m 243.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 1.02 10.69

nesta case30 as.m 800.14 0.05 0.01 0.00 0.02 0.00 0.00 0.00 2.04 21.08
nesta case30 fsr.m 574.97 0.23 0.25 0.26 0.27 0.19 0.16 0.16 2.13 21.92

nesta case30 ieee.m 203.30 15.93 1.96 0.41 0.40 0.13 0.10 0.10 2.09 20.84
nesta case57 ieee.m 1140.69 0.05 0.01 0.01 0.01 0.01 0.01 0.01 3.72 52.38

nesta case118 ieee.m 3696.72 2.10 1.74 1.54 1.52 1.52 1.52 1.52 8.42 101.52
nesta case162 ieee dtc.m 4142.39 2.47 2.33 2.30 2.30 2.29 2.28 2.28 12.88 198.38

nesta case300 ieee.m 16539.60 1.09 0.64 0.68 0.69 0.69 0.69 0.66 20.21 233.28
Method in [1]

nesta case3 lmbd.m 5812.64 1.67 1.33 1.26 1.26 1.26 1.26 1.26 0.28 2.69
nesta case4 gs.m 156.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.45 3.87

nesta case5 pjm.m 17551.89 14.49 14.24 11.14 8.95 8.87 8.70 8.70 0.54 5.59
nesta case6 ww.m 3119.26 0.13 0.07 0.02 0.04 0.04 0.02 0.02 0.69 11.02

nesta case9 wscc.m 5296.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.67 5.35
nesta case14 ieee.m 243.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 1.14 15.15

nesta case30 as.m 800.14 0.05 0.01 0.01 0.01 0.02 0.02 0.01 1.97 26.57
nesta case30 fsr.m 574.97 0.23 0.24 0.22 0.13 0.12 0.10 0.10 1.97 26.31

nesta case30 ieee.m 203.30 15.93 2.12 0.21 0.02 0.02 0.00 0.00 1.98 28.31
nesta case57 ieee.m 1140.69 0.05 0.01 0.00 0.00 0.00 0.00 0.00 3.55 52.64

nesta case118 ieee.m 3696.72 2.10 1.73 1.49 1.43 1.42 1.41 1.41 7.78 113.21
nesta case162 ieee dtc.m 4142.39 2.47 2.32 2.24 2.19 2.15 2.15 2.15 12.44 148.09

nesta case300 ieee.m 16539.60 1.09 0.61 0.50 0.41 0.39 0.38 0.38 19.51 188.17

For the 1354-bus system, there are 357 cycles in the cycle
basis. Once we have a solution from SOCP relaxation of the
AC OPF, 357 SDP problems are solved to check if the portion
of the solution that is related to a particular cycle is SDP
feasible or not. The feasibility is indicated by the norm 2
distance of the SOCP solution to the SDP feasible region or
the objective function of the minimization problem in (22).
Shall we choose a very small tolerance number, e.g., 10−10,
357 cuts will be generated and added to the set of constraints
of the SOCP relaxation problem at every iteration.

The 2224-bus case is solved first by SOCP relaxation. The
581 SDP problems are solved to check of the portion of the
solution related to certain cycle is SDP feasible or not. With
581 cuts generated, the SOCP relaxation problem has all cuts
added and is solved again. This leads to a reduction of gap
at 10 percent. Note that for large-scale cases, Mosek solver
reported numerical inaccuracy issue.

Compared to SOCP relaxation, solving time for SOCP
relaxation with SDP cuts is mainly dependent on the number
of cycles and the size of the cycles in the cycle basis. For
example, the computing time of nesta case162 ieee dtc is
comparable with that of nesta case300 ieee since both of them
have about 110 ∼ 120 cycles in their cycle basis. Though the
number of nodes in the 300-bus case is about twice of that
in the 161-bus system, the computing time just has a slight
increase.

V. CONCLUSION

This paper presents an LSE-based approach to find affine
inequalities for SOCP relaxation of AC OPF. The affine
inequalities serve as SDP cuts to reduce the feasible region and

get rid of SOCP solutions outside of the feasible region of SDP
relaxation. Least square estimation-based SDP cuts have been
demonstrated to be effective to exclude infeasible solutions
and enhance SOCP relaxation of OPF. This method has been
tested on variety of cases to demonstrate its effectiveness.
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