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Abstract—This paper presents impedance-model-based stabil-
ity analyses of power synchronization control (PSC) and two
types of vector controls used in voltage source converter-based
high voltage direct current (VSC-HVDC) systems. The impedance
model of a VSC with PSC is first derived. Stability analysis
is then carried out using multi-input multi-output (MIMO)
system analysis. As a comparison, power and angle transfer
function-based analysis is also conducted. The impedance model-
based stability analysis results are validated by the time-domain
simulations. Impedance models of two types of vector controls are
also derived for comparison. Effects of short circuit ratio (SCR),
power transfer level, high-pass filters, and the PSC gain are
demonstrated through analysis and real-time digital simulations
in RT-LAB.

Index Terms—power synchronization control, vector control,
weak ac system, Nyquist stability criterion, impedance model.

I. INTRODUCTION

Conventional line current commutating converter (LCC)-
HVDC transmission systems cannot perform properly if the
interconnected ac system is not strong enough [1–3]. The
strength of an ac system is commonly defined by short circuit
ratio (SCR), which depends on the HVDC nominal power and
the strength of the ac system. Normally, systems with SCR
values of less than 1.5 are considered as weak ac systems [4–
6]. In contrast to the traditional HVDC systems, VSC-HVDC
can be connected to very weak ac systems without any reactive
compensation [7]. Vector current control is the most popular
control scheme for the VSC-HVDC systems [8, 9]. Vector
control of the VSC-HVDC can control the converters in weak
ac systems with independent active and reactive power support
to the grid [10, 11].

However, there are some barriers regarding the application
of vector control especially when a VSC is connected to a
very weak ac system. Studies have shown that vector current
control of a VSC-HVDC cannot transfer power levels of more
than 0.4 p.u once connected to a grid with the SCR level
of 1 [12, 13]. Analytical studies indicated that the limiting
factors of vector controls can be the interactions between
current controls and grid inductances [6, 14] and/or phase-
locked-loop (PLL) dynamics [6, 14, 15]. It is mentioned in
[6, 14] that low frequency resonances may occur due to the
interactions of vector current control and weak ac systems.
Additionally, the PLL dynamics will cause problems when the
converter is synchronized with the weak grid. To overcome
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the weak grid issue, [15] applied gain scheduling technique
to design the outer loop power/voltage as an MIMO control
system, which resulted in an increase in the power transfer
level. Another solution is the power synchronization control
(PSC) [13]. Compared to the gain scheduling control where the
controller’s gain varies, PSC serves as a classic type controller
with a fixed structure and fixed parameters. The PSC has also
been shown as a superior alternative for vector control of VSC-
HVDC systems in connection to weak ac grids [13, 16–19].
Unlike the PLL that synchronizes the converter to the point of
common coupling (PCC), the PSC directly synchronizes the
converter to the grid through a power control loop.

Application of the PSC control method has been studied in a
few papers. In the first paper [13], the power synchronization is
introduced as an alternative to the conventional vector control
in weak ac systems. In [16], the PSC is used to interconnect
two very weak ac systems. The effect of different parameters
on the stability of the system is also investigated. The appli-
cation of the PSC for offshore wind farms is introduced in
[17]. Stability limitations of various control loops in HVDC
system enhanced with PSC are studied in [18]. It is found
that alternating voltage controls make systems more stable
compared to reactive power controls. Moreover, the impact
of the converter with the PSC control on sub-synchronous
resonance (SSR) damping is studied in [19], which shows that
the PSC can greatly improve the damping for SSR modes.

In the original PSC paper, the power versus angle transfer
function is used to carry out the stability analysis [13]. The
power versus angle transfer function considers a single input
single output (SISO) system, with the effect of voltage on
active power ignored.

Impedance modeling is a popular approach for converter and
grid interaction analysis [6, 20–23]. The impedance model of
the PSC has been derived in [19] for a converter connected to
a series compensated transmission line. The main focus of [19]
is to study the effect of power synchronization control on sub-
synchronous resonance caused by the interactions between the
synchronous generator and the converter. The analysis in [19]
relies on the frequency responses of the impedance matrices.
MIMO system analysis techniques were not adopted in the
aforementioned reference.

The main contribution of our paper is to analyze the stability
and robustness of the PSC for a VSC-HVDC interconnected to
a weak ac grid using impedance models. The MIMO system
impedance is derived and system stability is then evaluated
using singular value robustness analysis. Two types of vector
controls are also considered for comparison. The impedance
model of converters with vector control has been developed
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Fig. 1: Back-to-back VSC-HVDC connected to a weak ac system. Two different controls for the rectifier are also presented.

in the literature, as shown in [6, 14]. However, outer control
loops have not been considered. In this study, comprehensive
impedance models of vector controls will be derived for
comparison purpose.

Nyquist theory and the singular value of the return matrix
are applied for the stability and robustness analysis, respec-
tively. The eigen loci of the open-loop system and singular
value plots of the return difference matrix are employed in
the MIMO stability analysis.

The circuit and control structure of the system is shown
in Fig. 1. The PSC is implemented on the rectifier side of
the VSC-HVDC system (Converter 1). For comparison, the
impedance models for vector control of VSC-HVDC are also
derived. Two types of vector controls (with and without power
outer loops) will be examined.

The rest of the paper is organized as follows. Section II
describes the small-signal models used to derive the impedance
model. Section III presents the power/angle transfer function.
Section IV presents MIMO system-based stability analysis
and validation results by simulation. Section V concludes the
paper.
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Fig. 2: Simplified model of the system with the PSC. The
high-pass filters notated as H(s) in Fig. 1 are omitted in this
model. R = 0 Ω, L = 0.04 H , Rg1 = 0.1 Ω, Lg1 = 0.25 H
for SCR = 1, Lg1 = 0.088 H for SCR = 2 and Lg1 = 0.048
H for SCR = 3.

II. SMALL-SIGNAL MODEL OF THE SYSTEM

A. Circuit Dynamics

As the main contribution of this research is weak ac grids,
the converter to be studied is the rectifier (Converter 1) that is
connected to the weak ac grid. Fig. 2 illustrates a simple repre-
sentation of the system in Fig. 1 with the rectifier converter, the
ac grid and the filter considered. The high-pass filters notated
in Fig. 1 as H(s) are not included. Zg(s) = Rg1 + sLg1 is
the total impedance of the weak ac grid and its transformer,
Zconv(s) is the impedance viewed from the point of common
coupling (PCC). Vc is the converter input voltage and Vg1
is the ac grid voltage. The ac filter is represented by R and
L. As it can be observed, the converter is equipped with the
PSC and an alternating voltage control. The main dynamics
related to the inductor in the dq-reference frame (rotating at a
synchronous speed ω1) is expressed as:

V 1 − V c = L
dI

dt
+ jω1LI +RI. (1)

where, V 1, V c, and I are complex vectors for the PCC voltage,
the converter voltage, and the line current iabc in the dq-
reference frame. V 1 = v1d + jv1q , V c = vcd + jvcq , and
I = id + jiq .

Further, the converter input voltage is defined using its
magnitude Vc and the angle relative to the dq-reference frame
−θ based on the PSC control in Fig. 1:

V c = Vce
−jθ = Vc cos(θ)− jVc sin(θ) (2)

where θ is the output from the power control.
Since V c = Vce

−jθ, therefore its small-signal expression is

∆V c = −jVc0e−jθ0∆θ + e−jθ0∆Vc

= −jV c0∆θ + e−jθ0∆Vc. (3)

where the subscript 0 represents initial condition.
In Laplace domain, we now have:

∆I =
∆V 1 −∆V c

R+ (s+ jω1)L

=
∆V 1 + jV c0∆θ − e−jθ0∆Vc

R+ (s+ jω1)L
. (4)
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[
∆id
∆iq

]
︸ ︷︷ ︸
I(s)

=

[
R+ sL ω1L
−ω1L R+ sL

]
(R+ sL)2 + (ω1L)2︸ ︷︷ ︸

G11

[
∆v1d
∆v1q

]
︸ ︷︷ ︸
V1(s)

+

[
ω1Lvcd0 − (R+ sL)vcq0
(R+ sL)vcd0 + ω1Lvcq0

]
(R+ sL)2 + (ω1L)2︸ ︷︷ ︸

G12

∆θ +

[
ω1L sin θ0 − (R+ sL) cos θ0
ω1L cos θ0 + (R+ sL) sin θ0

]
(R+ sL)2 + (ω1L)2︸ ︷︷ ︸

G13

∆Vc (5)

Separating into dq components, we now have the small-
signal model of the circuit dynamics in (5).

B. Power Synchronization Control

The key structure of the PSC is illustrated in Fig. 1. The
idea behind the PSC comes from the analogy of the power
and angle relationship in synchronous machines [13]. In the
PSC, synchronization takes place by controlling the active
power through the converter. The PSC output is then used
as the reference angle for the VSC PWM unit. By applying
this method, the PLL is not needed. Referring to Fig. 1, the
difference between the reference active power of the converter
and the measured power is sent to an integrator controller
(Ki,PSC

s ), and the output of which presents the synchronization
angle (θ) [13].

θ(s) =
Ki,PSC

s
(P ref

1 (s)− P1(s)) (6)

The complex power from the PCC bus to the converter is
notated as S1: S1 = V 1I

∗
= (v1d + jv1q)(id − jiq).

The small-signal equations of active and reactive power are
as follows:

∆P1 = ∆v1did0 + ∆idv1d0 + ∆v1qiq0 + ∆iqv1q0,

∆Q1 = ∆v1qid0 + ∆idv1q0 −∆v1diq0 −∆iqv1d0. (7)

Therefore, the small-signal representation of the power syn-
chronization loop is derived by obtaining the small-signal
model of (6) and replacing ∆P1 using (7):

∆θ = −Ki,PSC

s

[
id0
iq0

]T

︸ ︷︷ ︸
G21

[
∆v1d
∆v1q

]
−Ki,PSC

s

[
v1d0
v1q0

]T

︸ ︷︷ ︸
G22

[
∆id
∆iq

]

+
Ki,PSC

s
∆P ref

1 (8)

C. AC Voltage Control Loop

As illustrated in Fig. 1, the AC voltage controller regulates
the magnitude of the rectifier voltage to maintain the grid
side voltage. A simple PI controller is used to control the
magnitude of the voltage, and the output of which is employed
to generate the reference converter voltage magnitude Vc.
Dynamic equation for the alternating voltage controller can
be expressed by [19]:

Vc =

(
kpv +

kiv
s

)
(V ref

1 − V1). (9)

where V ref
1 is the reference magnitude of the PCC voltage, and

V1 is the measured magnitude of PCC voltage,
√
v21d + v21q .

Therefore, the small-signal representation of V1 can be repre-
sented by:

∆V1 =
1

V1
(v1d0∆v1d + v1q0∆v1q) (10)

Applying the small-signal analysis to (9) and replacing ∆V1
in (9) by (10) leads to:

∆Vc =

(
kpv +

kiv
s

)
∆V ref

1 −
(
kpv +

kiv
s

)[v1d0
V1
v1d0
V1

]T
︸ ︷︷ ︸

G3

[
∆v1d
∆v1q

]

(11)

Parameters of the PSC are included in the Table III of the
Appendix.

D. Impedance Model of a VSC with PSC Control
Finally, the block diagram considering the circuit dynamics

in (5), PSC in (8), and voltage control in (11) is presented in
Fig. 3.

Power 

synchronization 

control

JPq 

DP1 Dq 

-

G11

G12

G13

G21

G3G22

Ki,PSC

s

kiv

s
kpv+

+

+

+
Dq 

I(s)

V1(s)

DPref

DVref
1

1

DVc
+

+

+
+

+

Fig. 3: Block diagram consisting the circuit dynamics, PSC,
and voltage control.

The relationship between the inputs and outputs is as
follows:

I(s) = (I −G12G22)−1(G11 + F12G21 −G13G3)︸ ︷︷ ︸
Yconv

V1(s)

+ (I −G12G22)−1

[ Ki,PSC

s G12(
kpv + kiv

s

)
G13

]T [
∆P ref

1

∆V ref
1

]
︸ ︷︷ ︸

−Ic

(12)

where I is a 2 × 2 identity matrix. This notation should be
differentiated from I(s), the current vector’s Laplace form.
Yconv is the admittance model of the converter and the

impedance model Zconv is the inverse of the admittance
matrix: Zconv = Y −1

conv. It can be seen that the impedance
model is also a 2× 2 matrix.

Equation (12) describes a Norton equivalent of the converter
with the RL filter. The entire system in Fig. 2 can now be
expressed as a circuit in Fig. 4.
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Fig. 4: Impedance model of a converter connected to a grid.

III. TRANSFER FUNCTION-BASED ANALYSIS

Given the power control loop, it is easy to seek the rela-
tionship between the complex power Sc = Pc + jQc injected
to the converter versus the voltage magnitude Vc and the
angle θ. The following derivation is based on small-signal
model of the complex power in the dq reference frame. Our
derivation is based on the complex power definition and line
impedance model. Compared to the derivation in [13], the
following derivation is straightforward and easy to follow. If
R is ignored, then P1 = Pc.

In the dq-reference frame, the complex vectors of the
converter voltage and the grid voltage are as follows:

Vc = Vc∠−θ, V g1 = Vg1∠0 (13)

where Vg1 is assumed to be constant, while Vc and θ are
controlled through the PSC’s voltage and power controls.

The electromagnetic dynamics of the line will not be
neglected. As a result, in Laplace domain, the current and
voltage relationship in the dq reference frame is

I(s) =
V g1(s)− V c(s)
R̃+ (s+ jω1)L̃

. (14)

where R̃ and L̃ are the total resistance and inductance between
the grid and the converter. Note that the line impedance model
in abc reference frame is R̃ + sL̃, while in a synchronous
reference frame it becomes R̃+ (s+ jω1)L̃.

The small-signal model of (14) is also derived as follows.
Assuming that the grid voltage is constant, then ∆V g1 = 0.

Therefore,

∆I(s) =
jV c0∆θ − e−jθ0∆Vc

R̃+ (s+ jω1)L̃
. (15)

Since the complex power to the converter can be expressed
as Sc = V cI

∗
, its expression in Laplace domain will be:

∆Sc(s) = V c0∆I
∗
(s) + I

∗
0∆V c(s) (16)

where the subscript 0 notates the initial conditions.
Substituting ∆I(s) using (15) and substituting ∆V c using

(3), we have

∆Sc =

 jV
2
c0

R̃+(s−jω1)L̃
− jSc0

−V c0

R+(s−jω1)L
− I∗0e−jθ0

T [∆θ(s)
∆Vc(s)

]
(17)

where Sc0 is the initial complex power and Sc0 = V c0I
∗
0.

Separating the real and imaginary parts, we can find ∆Pc =
JPθ∆θ+ JPV ∆Vc. The power to angle transfer function can
be found as:

JPθ = Qc0 −
ω1L̃V

2
c0

(R̃+ sL̃)2 + (ω1L̃)2
(18)

where Qc0 is the initial reactive power injected into the
converter and Qc0 = Im(Sc0).

The above transfer function indicates that there are 60 Hz
resonances due to the line electromagnetic dynamics. This
phenomenon has been mentioned in [13] and a high-pass
filter has been implemented to increase the damping for this
oscillating mode. The control idea is to increase the total
resistance by introducing a virtual resistance via a high-pass
filter. The resulting power angle transfer function becomes:

JPθ = Qc0 −
ω1L̃V

2
c0

(R̃+H(s) + sL̃)2 + (ω1L̃)2
(19)

where H(s) is the transfer function of the high-pass filter.
The virtual resistance will provide damping at 60 Hz. A

high pass filter will fulfill this task: H(s) = 0.5s
s+40 . The

implementation of the filter should be in the dq reference
frame with a constant rotating speed ω1 as shown in Fig. 1.
It can be seen that the PSC is coupled with the AC grid and
a high-pass filter is necessary. On the other hand, the vector
control is equipped with a feed forward compensation ([10],
Chap 3, pg. 53). The feedforward compensation decouples the
converter operation from the grid and enhances the disturbance
rejection capability. Therefore, there is no need for the high
pass filter in the vector control based converters.
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Fig. 5: The closed-loop system that consists of the PSC control
and the plant model.

Remarks: If we ignore the voltage control’s impact, we
may have a closed-loop system shown in Fig. 5 with the PSC
control and the plant model represented by (19). The open-
loop transfer function is Ki,PSC

s JPθ. Note that stability analysis
in [13] is based on this system.

IV. MIMO STABILITY ANALYSIS AND VALIDATION
THROUGH TIME-DOMAIN SIMULATION

According to Fig. 4, the current can be derived as follows.

I(s) = (Zg + Zconv)−1(Vg1(s)− ZconvIc(s))

= (Zg + Zconv)−1Y −1
convYconv(Vg1(s)− ZconvIc(s))

= [YconvZg + YconvZconv]
−1
Yconv(Vg1(s)− ZconvIc(s))

= [I + YconvZg]
−1

(YconvVg1(s)− Ic(s)) (20)

where I is the identity matrix. For the above system, two
assumptions are placed. (i) The grid voltage Vg1(s) is stable;
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Fig. 6: Comparison between real parts of converter impedances, Zconv(jω)’s first diagonal component for different controllers
of rectifier side converter.

(ii) the current is stable when the grid impedance Zg is zero,
i.e., YconvVg1(s)−Ic(s) is stable. The first assumption is valid
for the real-world scenarios as long as the grid voltage is
within the limits. The second assumption is valid as long as the
inverter converter admittance Yconv is stable and current order
is stable. For properly designed converters, the second assump-
tion is also true. Therefore, for the current I(s) to be stable,
we only need to examine the denominator: I+Yconv(s)Zg(s).
In order to claim that the system is stable, the zeros or roots of
the characteristic function det(I+Yconv(s)Zg(s)) = 0 should
be located in the left half plane (LHP).

As both the grid and converter impedances are 2 × 2
matrices, the circuit analysis problem becomes a multi-input
multi-output (MIMO) system stability problem. The MIMO
system stability criterion is given in [24]. The characteristic
function, det(I + YconvZg) = 0 should have no zeros in the
RHP.

Such stability criterion can be examined by checking the
eigen loci or the Nyquist plots of the eigenvalues of YconvZg .
If the eigen loci do not encircle (−1, 0), then the system
is stable. This technique has been extensively used in the
impedance-based stability analysis of the power electronic
converters [14, 23]. On the other hand, the minimum singular
value in the frequency domain of the return difference matrix
(I + YconvZg) provides an index of gain margin and phase
margin [25]. The singular value plots have been adopted in
the authors’ previous publication [26] to conduct impedance-
based stability analysis. The minimum singular value indicates
how close the return difference matrix is to singularity or
det(I + YconvZg) → 0 at which frequencies. The greater
the minimum singular value, the more robust the system.
Resonance frequency can be identified as the frequency where
the singular value is the minimum.

Results of the stability analysis will be validated by the
high-fidelity model based simulation. The topology of the
simulation model has been illustrated in Fig. 1 in detail. For the
real-time simulation of the proposed system, RT-LAB is used.
The detailed RT-LAB model includes pulse width modulation
(PWM) switching details and dc system dynamics which can
reflect the nonlinear and discrete behavior of the model. In
addition to the PSC, two types of vector controls are designed
for comparison. The first type has an outer active power and

voltage control loop, an inner current control, and a PLL as
shown in Fig. 1. The second type has no outer feedback loop.
Instead, the current references are computed directly from
power reference. This type of the vector control has been
analyzed in [14] and the detailed vector control design and
impedance derivation are presented in Appendices B and C.

To verify the strength of the system in analysis and simu-
lation, three different SCR values are considered; SCR = 1
resembles a very weak ac system, SCR = 2 for a normal
ac system, and SCR = 3 which is a strong system. The base
values to calculate the SCRs are included below: Vbase(LL) =
100 kV, Sbase = 100 MVA, PHVDC = 100 MVA, Lf1 = 0.04
H, Lg1 = 0.25 H for SCR = 1, Lg1 = 0.088 H for SCR = 2
and Lg1 = 0.048 H for SCR = 3.

A. Impedance of the Converter for Different Control

In the first case, impedances of the converter are derived
for three separate controls. Fig. 6 shows the 3D diagonal
(dd) component of Zconv(s) with the three controllers, where
the gray surface is the surface where the real part of the
impedance is zero. It is observed that with the PSC, the
converter impedance is positive for the frequency ranges of
more than 50 Hz for low power angles (or low power transfer
level).

It is also noted that as the power angle (or power level)
increases, the positive impedance occurs at a higher frequency.
For instance, for the power angle of 80 degrees, the positive
impedance happens at 70 Hz. Therefore, as the power level
increases, the impendence becomes more negative at the fun-
damental frequency. Compared to the PSC, the vector control
has negative impedance for frequency ranges of less than 120
Hz at low power angles. With an increase in the power angle
(or power level), the impedance will be more negative. This
shows that the PSC provides a positive impedance or more
damping within the frequency ranges where the vector control
provides a negative impedance.

B. Stability under Different SCR Scenarios

The first case study is designed to compare the PSC and two
other types of vector control for systems with three different
SCRs. The Nyquist plots for different controllers are illustrated
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Fig. 8: Comparison of singular value plots of I + Yconv(s)Zg(s) for the different SCR values and controllers of the rectifier
side converter. The power transfer level is 100 MW.

in Fig. 7 and the singular plots for the return matrix are shown
in Fig. 8.

Fig. 7 shows that for SCR = 3 none of the Nyquist
plots encircle (-1,0) in a clockwise direction. All the control
methods result in stable operation. When the SCR decreases,
all of the controllers’ performance deteriorates due to the
reduction in the gain and phase margins as illustrated in Fig.
7. By decreasing the SCR to 1, the vector controls encircle the
point (−1, 0) in a clockwise direction, indicating instability.
However, the PSC still provides a robust performance.

The singular value plots in Fig. 8 show that the PSC with the
high pass filter has the minimum singular values greater than
1 for various SCR scenarios. This indicates a robust stability
margin and immunity towards the SCR. On the other hand,
the vector controls have the minimum singular values of less
than 1. When the SCR reduces, this value also reduces, which
indicates that the vector controls are prone to instability when
the grid is weak. The singular value plots indicate that the
resonance frequency in the dq-reference frame is 60 Hz for
PSC. The eigen loci plots also indicate that the resonance
frequency is around 60 Hz for one locus.

Simulation results for the vector control (with outer loop)
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Fig. 9: Simulation results (real power, PCC voltage, and
reactive power) for a step change in the real power when the
vector control is applied and the SCR is 3.

are shown in Fig. 9 and Fig. 10. For the sake of simplicity,
only two SCR values are included. The vector control aims to
control the active power and terminal voltage at the rectifier
station. The step reference power change is applied to change
the reference power from 0.8 p.u to 1 p.u at the time 5 sec.
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Fig. 10: Simulation results (real power, PCC voltage, and
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vector control is applied and the SCR is 1.

It is observed that when the SCR is 3, the vector control can
follow the reference active power step change. In contrast to
the strong system, when the system is weak (SCR is 1) , the
vector control fails to support the power transfer to 0.8 p.u.
Simulation results are in agreement with the stability analysis
illustrated in Figs. 7 and 8.
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Fig. 11: Simulation results (real power, PCC voltage, and
reactive power) for a step change in the real power when the
PSC is applied and the SCR is 3.

Figs. 11-12 present the simulation results for the PSC in
strong and weak ac grids. Same as the previous case, an active
power change is applied to change the power transfer from 0.8
p.u. to 1 p.u. at 5 seconds. It is shown that for both cases, the
system is stable and the PSC can successfully transfer the
amount of active power which is needed. Compared to the
vector control, the PSC can transfer 1 p.u. even in a very
weak ac system connection.

Multiple power transfer levels for three separate controllers
are presented in Fig. 13. The first figure is for the vector
control with simple power controller. Compared to a simple
power controller, the vector control with PI outer loop provides
a better results for power levels of 80 MW and 100 MW.
However, the vector control fails to transfer 150 MW in this
case. In contrast, the PSC can transfer all three active power
levels.
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Fig. 12: Simulation results (real power, PCC voltage, and
reactive power) for a step change in the real power when the
PSC is applied and the SCR is 1.
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Fig. 13: Simulation results for different active power levels for
three different control approaches. (a) Vector control without
outer power loops. (b) Vector control with outer power loops.
(c) Power synchronization control. A three-phase fault is
applied at t = 5 s at the inverter ac side and cleared after
one cycle. The SCR for this case is set to 2.

C. Effect of the High-Pass Filter

The effect of the high-pass filter is examined in this subsec-
tion. The studied filter will move the 60 Hz resonant poles to
the left hand plane (LHP) and provide more stability margin
to the PSC controller. The results of the root loci (on the open
loop transfer function JPθ

Ki,PSC

s ) comparison for two cases
(with and without filters) are shown in Fig. 14. It is observed
that by adding the filter, two resonant 60 Hz poles will move
to the left in the s-plane, which indicates more damping.

Simulation results in Fig. 15 validate the analysis results.
The system is simulated without the filter at the beginning
and the filter is activated at 5 seconds. It is observed that
after activating the filter, 60 Hz oscillations caused by resonant
poles will be damped well.
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D. Effect of the PSC Loop Gain

A large PSC integral gain ensures a fast response. However,
a large gain can result in instability. This issue was mentioned
in [13] without presenting any analysis and simulation. In this
subsection, the root loci of the open loop transfer function
(JPθ

Ki,PSC

s ) are used to indicate the range of ki,PSC.
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Fig. 16: Root loci of PSC for SCR equal to 1, with the high
pass filter.

Results of root locus analysis of the system with PSC
control are illustrated in Fig. 16. It is observed that by
increasing the PSC gain to 390, the 60 Hz resonance poles
will move to the right hand side of the s-plane and make the
system unstable.

Simulation results for different PSC gains are presented in
Fig. 17. When the PSC gain is set to 390, large oscillations are
observed and power commands can not be followed. However,
with the gain as low as 50, the system will be stable.

The developed impedance model is also used to investigate
the effect of the filter and a large PSC gain. Fig. 18 shows
the effect of the filter and large gain on singular value plots.
The findings verify that the high-pass filter application helps to
improve the minimum singular value. On the other hand, when
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Fig. 18: Effects of high-pass filter and large gain.

the gain is increased from 50 to 200, the minimum singular
value becomes less than 1. The MIMO system analysis results
corroborate with the analysis results concluded from the power
and angle transfer function analysis and simulation.

V. CONCLUSION

Stability analysis of the VSC-HVDC system connected to
a very weak ac system has been presented in this study.
Three different controls for VSC are considered including
a power synchronization control, a vector control with PI
outer loops, and a vector control with simple power control.
The impedance-based analysis is implemented to derive the
converter input impedance considering the detailed controls.
The derived impedance model is then used to investigate the
interactions between the converter and the weak ac grid. The
MIMO system analysis is utilized to evaluate the system sta-
bility under several control strategies and operating conditions.
The case studies show that the PSC is capable to handle higher
power transfers compared to the vector controls. Moreover,
the 60 Hz resonance stability of PSC is greatly improved by
a high-pass filter. The PSC gain has a limit.

The overall results of the simulation and analysis demon-
strate the superior performance of PSC in terms of power
transfer when the ac grid is weak.
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APPENDIX A
SYSTEM AND CONTROLLER PARAMETERS

This section provides the parameters of the system and
controllers.

TABLE I: System Parameters of VSC-HVDC Model

Quantity Value
ac system line voltage 100 kV
ac system frequency 60 Hz

base power 100 MW
dc rated voltage 180 kV

dc cable parameters 0.0139 Ω/km, 0.159 mH/km, 0.231 µF/km
dc cable length 20 km

TABLE II: Parameters of Individual VSC

Switching frequency 1620 Hz
Grid filter 0.048 H (for SCR 3)
Grid filter 0.088 H (for SCR 2)
Grid filter 0.25 H (for SCR 1)

dc capacitor 96 µF

TABLE III: Parameters of Power Synchronization

PSC controller ki,|rmPSC=5
PI controller kpv=0.5, kiv=10

TABLE IV: Parameters of Vector Controllers

parameters bandwidth (rad/s)
Current controller kp=50, ki=100 1250

Alternating voltage controller kp=0.01, ki=100 100 (SCR=1)
50 (SCR =2)
33 (SCR=3)

Outer PI controller kp=0.1, ki=5 50

APPENDIX B
VECTOR CONTROL AND BANDWIDTHS

The inner current controls for the vector control should
be designed to be much faster than the outer control loops.
The converter voltage in abc frame is notated as vabc and
the current is notated as iabc. The voltage at the point of the
common coupling (PCC) is notated as v1. An RL circuit is
considered between the converter and the PCC. Therefore:

L
d
−→
i

dt
+R
−→
i = −→v −−→v 1. (21)

where −→. is the space vector. The dq-reference frame is now
utilized. It is assumed that the d-axis is aligned with the space
vector of the PCC voltage, thus:

L
d(id + jiq)

dt
+ jωL(id + jiq) +R(id + jiq)

= vd + jvq − v1d. (22)

Separating equation (22) into dq-axes, the plant model for the
current control design is derived:

L
did
dt

+Rid = vd − v1d + ωLiq︸ ︷︷ ︸
ud

(23)

L
diq
dt

+Riq = vq − ωLid︸ ︷︷ ︸
uq

(24)

The plant model for the current controller is assumed as
1/(R+sL) for both d and q axes. The inputs are ud, uq , while
the outputs are id and iq . The feedback controls are designed
for the dq-axis to track the reference currents. In addition, to
generate the dq components of the converter voltage, the cross
coupling and feed-forward voltage terms should be added to
the design.

A simplified inner current control block is illustrated in Fig.
19. The loop gain of system is represented by:

s

k ipk
*P

P

dd ii *

1V

Simplified Outer Loop Model

s

k ipk
d,refi

di

du

Simplified Inner Loop Model

RLs 

1

Plant Model

Fig. 19: Simplified block diagram for inner loop control.

l(s) =
kp
Ls

(
s+ ki

kp

s+ R
L

)
. (25)

As it is mentioned in [10], the plant pole is fairly close
to the origin. Therefore, this plant pole is canceled by the
compensator zero and the loop gain becomes:

l(s) =
kp
Ls

(26)

The closed-loop transfer function can be represented as:

GInner(s) =
l(s)

1 + l(s)
=

1

τs+ 1
(27)

where τ = L
kp

and ki = R
τ .

The inner loop gains are designed so that the bandwidth of
the inner loop with kp = 50, ki = 100, and L = 0.04H is
around 1250 rad/s.
Compared to the inner current controller, the outer loop is
designed to be very slow to reflect the dynamic changes.
The simplified block diagram of the outer control loop is
illustrated in Fig. 20. As the dq-reference frame is aligned
with the PCC voltage, the real and reactive powers can be
expressed as P = V1id and Q = V1iq , where, V1 is the
magnitude of PCC voltage.
A closed-loop simplified transfer function is represented as:
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s

k ipkP

P

dd,refi     =i
1V

Simplified Outer Loop Model

ref

Fig. 20: Simplified block diagram for outer loop control.

Gouter(s) =

(
kp + ki

s

)
V1

1 +
(
kp + ki

s

)
V1

=

kp
ki
s+ 1(

1
V1ki

+
kp
ki

)
s+ 1

(28)

This is a first-order transfer function to the form of as+1
τs+1 ,

where τ is the time constant (τ =
(

1
V1ki

+
kp
ki

)
) and the

system bandwidth can be found as 1/τ . In this study, the outer
loop gains are designed so that the bandwidth of the outer loop
with kp = 0.1 and ki = 5 is 4 rad/s. This bandwidth is 300
times slower than the inner control bandwidth.

The ac voltage PI controller is designed based on ∆Q =
V1∆iq , where V1 is the PCC voltage. Furthermore, the PCC
voltage change ∆V1 is proportional to ∆Q. Hence, the plant
model is derived as:

∆V1 =
∆Q

SCR
=

V1
SCR

∆iq (29)

The closed-loop system transfer function can be computed as:

∆V1
∆V ref

1

=
kps/ki + 1

(kp + SCR)s/ki + 1
(30)

with the assumption that V1 is approximately 1 pu. Therefore,
the time constant and the bandwidth are as follows:

τ =
kp + SCR

ki
(31)

ωbw = 1/τ (32)

For kp = 0.01, ki = 100 and SCR = 1, the bandwidth is 100
rad/s. For SCR = 2, the bandwidth is 50 rad/s.

APPENDIX C
DERIVATION OF IMPEDANCE MATRIX FOR VECTOR

CONTROL

The dynamics of the inner current controller can be ex-
pressed as:

V̄ cc = −
(
kp +

ki
s

)
(Īcref − Īc1)− jωLĪc1 +

1

sτ + 1
V̄ c1 (33)

where superscript c denotes the converter d− q frame, V̄ c1 is
the PCC voltage converted to dq frame, and I1 is the converter
dq frame current obtained from I1abc. It is noted that a first
order filter is also included in the design and τ is the time

constant of the filter (0.001). Rearranging (33) and separating
it to d− q components [6]:

Ic1 =

[
gc(s) 0

0 gc(s)

]
︸ ︷︷ ︸

Gc(s)

Icref +

[
yi(s) 0

0 yi(s)

]
︸ ︷︷ ︸

Yi(s)

V c
1 (34)

where Ic1, Icref and V c
1 are vectors of d−axis and q−axis

variables in converter d− q frame.{
gc(s) =

kps+ki
Ls2+kps+ki

yi(s) = s2

(Ls2+kps+ki)(sτ+1)

(35)

Now, impedance of the vector controlled converter can be
derived if Iref can be expressed by voltage and current vectors
in the grid d−q frame. The PLL is in charge of converting the
components from the converter d− q frame to the grid d− q
frame by synchronizing the angle. In the next subsections, the
effect of outer loops and the PLL will be added to derive the
impedance model of the vector controlled converter. Applying
the small signal analysis to (34) will result in:

∆Ic1 =

[
gc(s) 0

0 gc(s)

]
︸ ︷︷ ︸

Gc(s)

∆Icref +

[
yi(s) 0

0 yi(s)

]
︸ ︷︷ ︸

Yi(s)

∆V c
1

(36)

A. Effect of Outer Loops

Outer PI outer loops are illustrated in Fig. 1, where the d
axis will control the active power and q axis is in charge of
the converter input voltage. The primary dynamic equations of
the PI outer loops for deriving the reference d−q axis current
can be expressed as:{

Icd,ref = (Pref − P )FPI
Icq,ref = (Vref − V1)FV I

(37)

Where V1 is the magnitude of the PCC voltage, Vref is
the reference magnitude of the PCC voltage, FPI is the PI
controller transfer function (kpp+

kip
s ) for power control loop

and, FV I is the PI controller transfer function (kpv + kiv
s ) to

track the PCC voltage magnitude. Applying the small signal
analysis to (37): {

∆Icd,ref = −FPI∆P
∆Icq,ref = −FV I∆V1

(38)

The magnitude of the PCC voltage can be derived by: V1 =√
V 2
1d + V 2

1q , and the converter output active power can simply
be derived by: P = V1dI1d+V1qI1q , therefore, applying small
signal analysis:

∆P = I1d0∆V1d + V1d0∆I1d + I1q0∆V1q + V1q0∆I1q (39)

∆V1 =
V1d0∆V1d + V1q0∆V1q√

V 2
1d0 + V 2

1q0

=
Vd0
V0

∆V1d +
Vq0
V0

∆V1q (40)
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By replacing the (39) and (40) into (38):

∆Icref =

[
−FPIv1d0 −FPIv1q0

0 0

]
︸ ︷︷ ︸

G1(s)

∆Ic1+

[
−FPIId0 −FPIIq0
−Vd0

V0
FV I −Vq0

V0
FV I

]
︸ ︷︷ ︸

G2(s)

∆V c
1 (41)

The impedance of the vector controlled converter with outer
loops and without the PLL is then derived by substituting (41)
into (36):

∆Ic1 =
Ge(s)G2(s) + Yi(s)

I −Ge(s)G1(s)︸ ︷︷ ︸
[Zc

Rec]
−1

∆V c
1 (42)

B. The PLL Effect

Impedance analysis of the PLL has been performed in [6]
in detail. The final equations are adopted here and detailed
analysis can be found in [6]. The main goal is to convert
the Īc1 and V̄ c1 from the converter frame to the grid frame
components (Ī1 and V̄1) by :

∆Ic1 = ∆I1 −

[
0 Q0

V0
GPLL

0 Q0

V0
GPLL

]
︸ ︷︷ ︸

GpPLL

∆V 1

∆V c
1 =

[
1 0
0 1− V10GPLL

]
︸ ︷︷ ︸

GsPLL

∆V 1 (43)

where GPLL is a simple PI controller as:GPLL = KPLL
p +

kPLL
i

s . For deriving the impedance model of the vector con-
trolled converter with the outer power loop and the PLL effect,
(43) is substituted into (42), then the result will be:

ZRec(s) =
1

GpPLL + [ZcRec]
−1
GsPLL

(44)
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