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Abstract— In this paper, we consider an optimization prob-
lem solving for model predictive control (MPC) of a modular
multilevel converter (MMC). An MMC consists of a large num-
ber of submodules. The objective of the MPC is to determine
the best switching sequences for the submodules in the MMC
to track the phase current references for T time horizons. The
MPC is formulated as a nonlinear mixed-integer programming
(MIP) problem with the on/off status of submodules as binary
decision variables and MMC dynamic states such as phase
currents, circulating currents and submodule capacitor voltages
as continuous decision variables. With a large number of
submodules and a large number of time horizons, the dimension
of the nonlinear MIP problem becomes difficult to handle. Our
contribution is to formulate this problem and solve this problem
using Bender’s decomposition. An example 4-level single-phase
MMC is demonstrated for the proposed algorithm.

Index Terms— MMC; Nonlinear mixed-integer programming
problem; Bender’s decomposition

I. INTRODUCTION

Compared with traditional two-level voltage source con-
verter (VSC), MMCs have much lower harmonics in the out-
put voltage, which significantly reduces the size of grid side
filter [?]. MMCs have modular topology and the extensibility
for several hundreds of output voltage levels. Therefore,
MMC is ideal for high-voltage high-power applications, such
as HVDC transmission [?], high-voltage motor drives [?],
and electric railways [?]. Fig. 1 is the topology of a three
phase MMC. For an N + 1 level MMC, there are N sub-
modules on each arm of the converter. Each sub-module is a
half bridge dc-dc converter. Since the current flows through
different sub-modules at different times, the voltages of sub-
modules capacitors vary.

A. State-of-the-art MMC Switching Schemes

MMC control differs from two-level VSC control in two
aspects: (i) switching sequence generation and (ii) the inclu-
sion of circulating current mitigation control. In switching
sequence generation, in two-level VSCs, the output from
pulse width modulation (PWM) is the switching sequence
directly fed to the gates. In MMCs, the output of pulse-
width modulation or other types of switching schemes is the
number of submodules to be turned on at each arm. Which
submodules to be turned on then depends on additional sub-
module voltage balance consideration. The PWM switching
schemes are also very different from that of two-level VSCs.
Phase-disposition (PD)-PWM and Phase shifted-PWM are
often adopted [?] (see Fig. 2 for an example of PD-PWM).
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Fig. 1. Three phase MMC topology.

In MMC’s PWM, there are usually many carrier signals for
the reference sinusoidal signal to be compared to; while for
two-level VSC’s PMW, there is usually one triangular carrier
signal.
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Fig. 2. (a) Three-level VSC PD-PMW scheme and switching status
of a phase. (b) Seven-level VSC PD-PWM scheme and switching
status of a phase.

MMC PWM gives only the number of sub-modules to be



switched on. To determine which modules to be switched
on, another phase is required: capacitor voltage balancing.
A capacitor voltage balancing block selects the proper sub-
modules to be switched.

B. Our Contributions

As an advanced control method, MPC is very successful
on its application for the control of power converters [?].
Its basic principle is to generate a system dynamic model
based minimizing optimization problem, and provide the
solutions to the controller for driving the system to reach
the control targets (Generally they will be formulated as
the objective function in the MPC optimization problem).
A major challenge for implementing MPC on MMC is
that the system dynamic model of MMC is nonlinear with
binary terms, in other word, the MPC problem of MMC is
a nonlinear MIP problem which generally is difficult to be
solved.

In this paper, we adopt Bender’s decomposition to solve
the MPC problem. Our major focus is the derivation for the
MPC problem formulation and its Bender’s decomposition
forms. In the case study section, the potential and practica-
bility of this application are verified.

The rest of the paper is organized as follows. Section II
gives the dynamic model of a single-phase MMC. Section
III gives the details about the formulation of the MPC as
a nonlinear MIP problem. Section IV gives the Bender’s
decomposition algorithm. Section V presents the case study
and results. Finally, the paper is concluded in Section VI.

II. DYNAMIC MODEL OF MMC
Fig. 1 shows the overall structure of a three-phase MMC

consisting of six arms. Subscripts u and l denote upper
and lower arms, respectively. There are N sub-modules and
one inductor L0 on each arm. A resistor R0 is inserted to
represent the switching loss of the IGBTs on each arm.
The output voltage of each sub-module has two values,
vc (connected) and 0 (disconnected). When the number of
sub-modules or the switching frequency is high enough,
the voltage across whole sub-modules in each arm can
be considered as continuous. Since the dc side capacitors
are usually big enough, the voltage across the arm can be
considered as a constant dc voltage. Thus, we can express a
single-phase equivalent circuit of a MMC as Fig. 3.

In Fig. 3, iu and il are the arm currents for upper and
lower arms; io and vo are the converter output current
and voltage respectively. The circulating current flowing
within the converter is denoted as idiff . Since the upper
and lower arm are symmetric, ideally both lower and upper
arm currents contain half of the converter output current.
Therefore, with Kirchhoff Current Law (KCL), we can get
following equations.{

iu = idiff + io
2

il = idiff − io
2

⇒

{
idiff = iu+il

2

io = iu − il.
(1)

The voltage across the arm resistance and inductance can
be expressed by the arm current. Therefore, with Kirchhoff
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Fig. 3. Single phase equivalent circuit of MMC.

Voltage Law (KVL), we can have the voltage relationship as
follows. {

vu + iuR0 + L0
diu
dt = Vdc

2 − vo
vl + ilR0 + L0

dil
dt = Vdc

2 + vo
(2)

Considering that the output voltage vo can be written as
vg + ioR+ Ldio

dt and (1), by substracting the two equations
from (2) we have:
vu − vl

2
+

(
R+

1

2
R0

)
io+

(
L+

1

2
L0

)
dio
dt

+vg = 0 (3)

It is obvious that the term vu−vl
2 in (2) drives the output

current of the converter, therefore we name this term as e,
which is the inner EMF of the converter. We can have an
equivalent circuit of MMC as Fig. 4.
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Fig. 4. An equivalent circuit of one phase of MMC.

Adding the two equations in (2) leads to the plant model
of the circulating current control:

idiffR0 + L0
didiff

dt
=
Vdc

2
− vu + vl

2
. (4)

Considering Fig. 1, since vu and vl are the sum of all
submodule voltages on the correspond arm, we can express
vu and vl through the following equations.{

vu =
∑N
i=1 VSMi, upper arm

vl =
∑2N
i=N+1 VSMi, lower arm

(5)

For convenience, we name the voltage of the capacitor on
each submodule as vc(i), and the state of the correspond
IGBT as u(i). Apparently, VSMi = vc(i)u(i), combine it
with the equation (5), then we have:{

vu =
∑N
i=1 vc(i)u(i), upper arm

vl =
∑2N
i=N+1 vc(i)u(i), lower arm

(6)



III. NONLINEAR MIP OPTIMIZATION PROBLEM
FORMULATION

We propose to discretize the continuous dynamic model
of MMC which described by (1)–(6). It means we consider:

dio
dt

=
io(k + 1)− io(k)

h
, (7)

didiff

dt
=
idiff(k + 1)− idiff(k)

h
, (8)

where h is the step size of the discretized signal, k ∈
{1, 2, · · · , T} is the index of the time step. Combining (7)
and (8) respectively with (3) and (4), we obtain the following
equations:

io(k + 1) = io(k) +
h

L+
L0
2

[
−
(
R+ R0

2

)
io(k)− vg(k)− vu(k)−vl(k)

2

]
(9)

idiff(k + 1) = idiff(k) +
h
L

[
−R0iz(k) +

Vdc

2 −
vu(k)+vl(k)

2

]
(10)

where {
vu(k) =

∑N
i=1 vc(i, k)u(i, k)

vl(k) =
∑2N
i=N+1 vc(i, k)u(i, k)

(11)

In (11), N is the numbers of switches on one arm, i ∈
{1, 2, · · · , 2N} is the index of switches. We expect to control
the MMC output current to track the current reference which
is a sinusoidal waveform. This can be expressed by solving
the following optimization problem:

min

T∑
k=1

[
iref
o (k)− io(k)

]2
(12)

subject to (9), (10),

vu(k) =

N∑
i=1

vc(i, k)u(i, k)

vl(k) =

2N∑
i=N+1

vc(i, k)u(i, k)

vc(i, k + 1) =


vc(i, k) +

h
c · u(i, k)

[
io(k)

2 + idiff(k)
]
,

i = 1, 2, · · · , N.
vc(i, k) +

h
c · u(i, k)

[
− io(k)

2 + idiff(k)
]
,

i = N + 1, · · · , 2N
2N∑
i=1

u(i, k) = N

u(i, k) ∈ {0, 1}

where iref
o is our reference current, u(i, k) is the state of the

ith switch at the kth time step, vc(i, k) is the voltage on the
ith switch capacitor at the kth time step.

If we replace the binary constraint u(i, k) ∈ {0, 1} by
an equality constraint u(i, k)(1 − u(i, k)) = 0 with u(i, k)
as continuous variable, then this problem can be solved by
nonlinear programming solver fmincon using sequential
quadratic programming (SQP) algorithm.

IV. BENDER’S DECOMPOSITION FORMULATION

To implement Bender’s decomposition for solving the
problem (12), we separate the problem into a master problem
and a subproblem. In the subproblem, the binary variable u
is considered as fixed value. Therefore the subproblem could
be solved as a linear programming problem. Iteratively, the
dual variables which are solved from the subproblem that
will be used to generate Bender’s cuts and add them to the
master problem. And then, the solution of u from the master
problem is returned to the subproblem. This iteration process
is repeated until the stop criteria is met.

A. Subproblem
In our case, decision variables in the subproblem are: io,

idiff , vu, vl, and vc, and define any given u as û, its primal
problem could be expressed as follow:

vub = min

T∑
k=1

[
iref
o (k)− io(k)

]2
(13)

subject to (9), (10)

vu(k) =

N∑
i=1

vc(i, k)û(i, k)

vl(k) =

2N∑
i=N+1

vc(i, k)û(i, k)

vc(i, k + 1) =


vc(i, k) +

h
c · û(i, k)

[
io(k)

2 + idiff(k)
]

i = 1, 2, · · · , N.
vc(i, k) +

h
c · û(i, k)

[
− io(k)

2 + idiff(k)
]

i = N + 1, · · · , 2N.
where vub is the value of the objective function. If û is a
feasible solution that can make

∑
i û(i, k) = N , then vub is

an upper bound (UB) of the original nonlinear MIP problem.
To generate Bender’s cuts, we need to find dual variables

which correspond with the constraints that include the binary
variable u. To achieve this, first we define a Lagrangian func-
tion to aggregate the objective function and the constraints
that are related to u.

L =

T∑
k=1

[
iref
o (k)−io(k)

]2
+

N∑
i=1

∑
k

λ1(i, k)

{
vc(i, k+1)−vc(i, k)−

h

c
u(i, k)

[
io(k)

2
+idiff(k)

]}

+

2N∑
i=N+1

∑
k

λ2(i, k)

{
vc(i, k+1)−vc(i, k)−

h

c
u(i, k)

[
−
io(k)

2
+idiff(k)

]}

+
∑
k

λ3(k)

[
vu(k)−

N∑
i=1

vc(i, k)u(i, k)

]

+
∑
k

λ4(k)

vl(k)−
2N∑

i=1+N

vc(i, k)u(i, k)

 .
The partial dual of the original problem can be formulated

as follows.

max
λ

min
io,idiff ,vu,vl,vc

L



subject to (9), (10)

B. Cuts introduced by the subproblem

Given a û, we may formulate a cut using the following
inequality constraint:

µ ≥ vlub

[
ûl(i, k)

]
+
∑
k

∑
i

gl(i, k)
[
u(i, k)− ûl(i, k)

]
(14)

where superscript l ∈ {1, 2, · · · ,K} is the index of the cuts
(capital K denotes the last Bender’s iteration step), matrix g
is defined as:

g =


∂L(λ̂1,λ̂2,λ̂3,λ̂4)

∂u(1,1) · · · ∂L(λ̂1,λ̂2,λ̂3,λ̂4)
∂u(1,T )

...
. . .

...
∂L(λ̂1,λ̂2,λ̂3,λ̂4)

∂u(2N,1) · · · ∂L(λ̂1,λ̂2,λ̂3,λ̂4)
∂u(2N,T )


thus

g(i, k) =


−λ̂1(i, k)

h
c

[
io(k)

2 + idiff(k)
]
− λ̂3(k)vc(i, k),

i = 1, 2, · · · , N.
−λ̂2(i, k)

h
c

[
− io(k)

2 + idiff(k)
]
− λ̂4(k)vc(i, k),

i = N + 1, · · · , 2N.

C. Master problem

Associating Bender’s cuts, the master problem can be
written as follows:

vlb = min µ

subject to
2N∑
i=1

u(i, k) = N

u(i, k) ∈ {0, 1}
µ ≥ vlub

[
ûl(i, k)

]
+
∑
k

∑
i

gl(i, k)
[
u(i, k)− ûl(i, k)

]
where vlb is a lower bound (LB) of the original nonlinear
MIP problem.

Apparently, the above problem is a mixed integer linear
programming problem which can be solved by gurobi or
mosek. Therefore, through the iteration, if the objective
functions’ values of the master problem and subproblem are
close enough to reach a stop criteria, we can consider the
optimal solutions are found. Generally, the criteria is defined
as:

ε ≥ |vub − vlb|

where ε is a fixed small value.

V. CASE STUDY

In this section, a 5 level MMC is used as the platform to
test the effectiveness of Bender’s algorithm. The parameters
of the MMC and MPC time step size are listed in Table I.
Matlab CVX toolbox with Mosek 7.1 solver are applied to
solve the master and subproblem. The stop criteria constant
is ε = 1 × 10−5. To examine the performance of Bender’s

TABLE I
PARAMETERS TABLE

Items Values
Submodule capacitor (Csm) 2500 µF
Insert inductor (L0) 10 mH
Insert resistor (R0) 0.1 Ω
Terminal inductor (L) 2 mH
Terminal resistor (R) 0.03 Ω
DC voltage (Vdc) 40 kV
Rated frequency(f ) 60 Hz
Grid voltage magnitude (vs) 20 kV
Reference current magnitude (iref

o ) 5 kA
Prediction step size (h) 25 µs

algorithm, we have also developed a group of matlab codes
to solve the problem (12) via fmincon function based SQP
method. The solutions of two methods about their objective
values and solving time cost for different predict horizons
are listed separately in Table II.

Note: As the calculate mechanisms are different. In our
implementation, SQP and Bender’s decomposition adopt dif-
ferent methods to calculate time cost. In Bender’s algorithm,
the time cost is the time consuming when the stop criteria
is reached at first time (when T = 10, as it dose not
reach the criteria, the time cost is the time consuming for
50 iterations). In SQP method, time cost tcost is calculated
through: tcost = tsum/m , where m is the numbers of
different initial values that has been tested, tsum is the total
time cost for all of the testing.
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Fig. 5. Current tracking of Bender’s algorithm when T = 5

Fig. 5 and 6 present, when using Bender’s algorithm, the
current tracking performance and the convergence of the
objective value for subproblem and master problem when
T = 5; Fig. 7 and 8 show the performance and convergence
when the predict horizon is 7; Table III lists the solutions
of the integer variables for the correspond horizon T . From
those results, we can see the performance of Bender’s
algorithm is examined: the current tracking is nearly prefect,
the solutions of the integer values are completely feasible,
and the objective value of the master problem (LB) and
subproblem (UB) are converged within a reasonable iteration
steps. Moreover, according to the data in Table II, which
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Fig. 6. Convergence of the objective value for the master problem and
subproblem when T = 5.

is proposed to compare the solutions of the problem (12)
by Bender’s algorithm and SQP method, we can see the
Bender’s algorithm has some obvious advantages than SQP
method.
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Fig. 7. Current tracking of Bender’s algorithm when T = 7.

TABLE II
RESULTS COMPARISON OF BENDER’S DECOMPOSITION AND SQP

ALGORITHM

T Nonlinear(SQP) Benders
Obj T (sec) UB LB T (sec)

5 2.90 11.19 1.11e-16 1.11e-16 0.77
7 7.24 39.96 2.80e-6 2.80e-6 1.87
10 22.28 40.70 0.16 -0.72 56.61

However, from the data in Table II when T = 10, we can
see, with more time cost than the SQP method, the difference
between the master problem and subproblem still can not
reach the stop criteria. In fact, when T = 10, even spend
more than one hour to run the Bender’s algorithm to 70
iteration steps, the convergence result can not be changed
significantly and not reach the stop criteria. The reasons of
this situation are the optimal value of the subproblem can
not be guaranteed to decrease during the iteration [?], and
the master problem became way too complicated after too
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Fig. 8. Convergence of the objective value for the master problem and
subproblem when T = 7.

TABLE III
BINARY SOLUTION

T = 5 T = 7

0 1 0 0 1 0 1 1 0 0 1 1
0 0 1 1 0 0 0 0 0 1 1 0
1 0 0 1 0 1 0 0 1 1 0 1
0 1 1 0 0 1 0 1 0 1 1 1
1 0 0 1 0 1 1 1 1 1 0 1
1 0 1 0 1 1 1 0 0 0 0 0
1 1 1 1 1 0 1 1 1 0 1 0
0 1 0 0 1 0 0 0 1 0 0 0

many cuts added. Although the stop criteria has not been
reached for 10 horizon, from Fig. 9 and 10, we can see the
tendency of convergence is obvious for the master problem
and subproblem. Thus, we can expect, if long enough time
is provided for iteration, or those two problems which have
been mentioned above are solved, Bender’s algorithm will
be practicable when T ≥ 10.

As we only implement classic Bender’s algorithm to solve
the problem, there is no any step to deal with the problems
about the convergence of the subproblem and the numbers of
cuts. According to [?] [?] and [?], some modified Bender’s
algorithm could improve the computational effectiveness
than the classic one. However, given the time limit, we
can not finish all the studies about these improved Bender’s
algorithms. Thus, more research achievements about this
topic are expected to be included in our further papers.

VI. CONCLUSION

In this paper, a dynamic model of MMC are derived and
then formulated to a MPC problem. We separated the original
MPC problem into a master problem and a subproblem to
implement Bender’s decomposition to solve the problem. A
5 level MMC is selected to test the proposed algorithm, and
the solutions for different predict horizons are presented and
compared with the solutions of SQP. According to the results,
Bender’s decomposition has greater performance on solving
the low horizon MPC problem than SQP method. However
for longer horizon (T ≥ 10), even with the presented
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Fig. 9. Current tracking of Bender’s algorithm when T = 10.
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Fig. 10. Convergence of the objective value for the master problem and
subproblem when T = 10.

potential to solve the problem, the Bender’s algorithm still
need further adjustment to reduce the computational load.
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