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Motivation

*Power system stabilizer (PSS) is used to providing damping to electro-
mechanical oscillation modes for a synchronous generator.

* There is damping issue related to automatic voltage regulator (AVR) at high power
transfer level [1].

*Conventional PSS design is based on the linearized model of a typical
operating condition.
* At another operating condition, PSS may not work well.

*Robust PSS can work for a wide range of operating conditions.
* Lyapunov stability theory:
x=Ax. If there exists a P>0, that makes AT P+PA<O0 true. Then, the system is stable.

If ATP+PA < —B*P, the system is exponentially stable where f is positive. .

North America Power Symposium 2016, Sep.

18-20, 2016, Denver, USA 3 /20/E
[1] Y. Li and L. Fan, “Determine power transfer limits of an smib system through linear system analysis with nonlinear simulation validation,” in North American Power
Symposium (NAPS), 2015, Oct 2015, pp. 1-6.



Robust design based on Lyapunoy
stability criterion

*For different conditions, there are different A matrix and B matrix.

x=A; X+ Bu
x=A,Xx+B,u

* ok kX

x=A,X+B,u

u= KCx that can stabilize all the closed-loop systems.
x = (A+BKC)x = (Ai+BKC)'P+P(A,+ BKC) < —B*P
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Convert the inequalities to LMI

*Using two variables X and Y to replace two unknown matrices, K
and P [2].

0 >(A; + B;KC)' P+ P(A; + B;KC) + BP
If X =P lad Y =KCP!

*Then, MATLAB CVX toolbox is used to find X matrix and Y
matrix to satisfy this inequality.

0> XA +Y Bl + A, X 4+ B;Y + X3
“K matrix is estimated easily based on X and Y. %

K =YX 'Cc!
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Our contribution

*H,, design is based on a nominal system and considers a bounded
uncertainty [3].

*Solve one or two LMIs.

*Our design is based on many operating conditions.
“Solve 50 LMIs.

*Not possible without the advancement in computing of convex
programming tools.

* Matlab CVX toolbox — 2012.
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[3] J.-K. Shiau, G. N. Taranto, J. H. Chow, and G. Boukarim, “Power swing damping controller design using an iterative linear matrix inequality algorithm,” IEEE
Transactions on Control Systems Technology, vol. 7, no. 3, pp. 371-381, May 1999.



Application of PSS design

*The power system can be presented by the state space matrix.
Tz = A;x + Bu
y =z
* Several values are changed under different operating conditions.
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Block diagram of EMT+AVR model of SMIB system
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Application of PSS design

* Conventional PSS is applied to EMT+AVR model.
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*Two zeros and one pole are added to change the system’s root locus.
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Application of PSS design

*Robust PSS is applied to EMT+AVR model.
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*If all of state variables are considered as outputs, C matrix will be a unit one.

K=YX'C7! wmmm) K=KC=YX!
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Application of PSS design

*50 conditions are considered totally.

* 25 combinations of real power and reactive power generated by synchronous machine.
* fault on one of transmission line

*10 conditions are selected to verify if designed robust PSS works.
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Application of PSS design

*KC can be found to satisfy all of fifty LMIs by running the following

CVX code in MATLAB.

cvx_begin sdp
variable X (n,n) symmetric
variable Y (1,n)

X«A1l’+ Y’ *B’ +A1xX+B*xY+Xxbeta <=0
X*xA2"+ Y’ xB’ +A2«X+BxY+Xxbeta <=0

X>=eye (n)
cvx_end
KC=Y*1inv (X)

KC =
1.0e+03 =
0.0080 7.6136 -0.1016
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Case Study

*Comparison of eigenvalues
*Case 1: no PSS
* Case 2: conventional PSS
* Case 3: robust PSS

*Nonlinear simulation results

* Case 2: conventional PSS
*Case 3: robust PSS
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Comparison of Eigenvalues

* Closed-loop eigenvalues under selected 10 conditions.

Condl -4.2411 &-9.3056
Cond7 : : i | -8.9842 £+53.0798i
Condl5 | -3.496 . -12.044 10541
Condl17 | -6.2844 4 2.65681 | -9.2564 1=53.05781
Cond22 | -5.9135 4 2.85721 | -9.6273 £53.04741
Cond28 | -8.6645 = 4.66011 | -7.0430 =53.31201
Cond31 | -6.2087 £ 7.91911 | -9.4988 4-53.03711i
Cond39 | -7.1413 & 7.67041 | -8.5662 153.09531
Cond43 | -7.1527 4+ 5.35021 | -8.5547 £53.11311
Cond50 | -3.4588 £ 9.27251 | -12.2486 £53.14551
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Nonlinear Simulation Results
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*Calculating initial values based on Cond1 and Cond?7
*Step change on input, 0.01p.u..
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Nonlinear Simulation Results

Conventional PSS

*The right plot showed that the system became stable after a transient
while the left plot presented an unstable system.

*The oscillation frequency was around 5.10rad/s (0.81Hz).
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Nonlinear Simulation Results
Robust PSS

*The system was stable under both of conditions.

*Robust PSS has the faster response speed and smaller oscillation.

Conventional PSS
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Conclusion

* Better robustness because of multiple operation conditions considered.

*The control design is based on LMI solving using convex
programming tools.
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Thank you!



