

Design A Robust Power System Stabilizer on SMIB Using Lyapunov Theory

Authors: Yin Li, *Student Member, IEEE*, Lingling Fan, *Senior Member, IEEE*

Presented by: Yin Li

Smart Grid Power System Laboratory Department of Electrical Engineering, University of South Florida

North America Power Symposium 2016, Sep. 18-20, 2016, Denver, USA

1

9/21/2016

*Motivation of robust power system stabilizer (PSS)

*Robust design based on Lyapunov stability criterion
*Our contribution

*Application in PSS design

*Power system stabilizer (PSS) is used to providing damping to electromechanical oscillation modes for a synchronous generator.

* There is damping issue related to automatic voltage regulator (AVR) at high power transfer level [1].

*Conventional PSS design is based on the linearized model of a typical operating condition.

* At another operating condition, PSS may not work well.

*Robust PSS can work for a wide range of operating conditions.

* Lyapunov stability theory:

 $\dot{x}=Ax$. If there exists a $P \ge 0$, that makes $A^T P + PA \le 0$ true. Then, the system is stable.

If $A^T P + PA \leq -\beta * P$, the system is exponentially stable where β is positive.

North America Power Symposium 2016, Sep. 18-20, 2016, Denver, USA

3

9/21/2016

[1] Y. Li and L. Fan, "Determine power transfer limits of an smib system through linear system analysis with nonlinear simulation validation," in North American Power Symposium (NAPS), 2015, Oct 2015, pp. 1–6.

Robust design based on Lyapunoy stability criterion

*For different conditions, there are different A matrix and B matrix.

$$\dot{x} = A_1 x + B_1 u$$

$$\dot{x} = A_2 x + B_2 u$$

$$\dot{x} = A_n x + B_n u$$

u = KCx that can stabilize all the closed-loop systems.

 $\dot{x} = (A_i + B_i KC) x \quad \Rightarrow \quad (Ai + B_i KC)^T P + P(A_i + B_i KC) \leq -\beta *P$

North America Power Symposium 2016, Sep. 18-20, 2016, Denver, USA

Not LMIs!

Convert the inequalities to LMI

*Using two variables X and Y to replace two unknown matrices, K and P [2].

$$0 \ge (A_i + B_i KC)^T P + P(A_i + B_i KC) + \beta P$$

If $X = P^{-1}$ and $Y = KCP^{-1}$

*Then, MATLAB CVX toolbox is used to find X matrix and Y matrix to satisfy this inequality.

$$0 \ge XA_i^T + Y^TB_i^T + A_iX + B_iY + X\beta$$

K matrix is estimated easily based on X and Y.

$$K = YX^{-1}C^{-1}$$

North America Power Symposium 2016, Sep. 18-20, 2016, Denver, USA

[2] EE363 Linear Dynamic Systems by Professor Stephen Boyd, Stanford University.

5

LMIs!

9/21/2016

Our contribution

 $^*H_{\infty}$ design is based on a nominal system and considers a bounded uncertainty [3].

* Solve one or two LMIs.

*Our design is based on many operating conditions.

* Solve 50 LMIs.

* Not possible without the advancement in computing of convex programming tools.

* Matlab CVX toolbox – 2012.

North America Power Symposium 2016, Sep. 18-20, 2016, Denver, USA

6

9/21/2016

[3] J.-K. Shiau, G. N. Taranto, J. H. Chow, and G. Boukarim, "Power swing damping controller design using an iterative linear matrix inequality algorithm," IEEE Transactions on Control Systems Technology, vol. 7, no. 3, pp. 371–381, May 1999.

* The power system can be presented by the state space matrix.

$$\begin{cases} \dot{x} = A_i x + B u\\ y = C x \end{cases}$$

* Several values are changed under different operating conditions.

* Conventional PSS is applied to EMT+AVR model.

* Two zeros and one pole are added to change the system's root locus.

* Robust PSS is applied to EMT+AVR model.

* If all of state variables are considered as outputs, C matrix will be a unit one.

$$K = YX^{-1}C^{-1}$$
 $K = KC = YX^{-1}$

* 50 conditions are considered totally.

- * 25 combinations of real power and reactive power generated by synchronous machine.
- * fault on one of transmission line

North An

18-20, 2

*10 conditions are selected to verify if designed robust PSS works.

	$X_L = 0.4$					
	Q(p.u.) P(p.u.)	-0.8	-0.5	0	0.5	0.8
	1.28	C ad1	Cond2	Cond3	Cond4	Cond5
	1.26	Cond6	Cyad7	Cond8	Cond9	Cond10
	1.0	Cond11	Cond12	Cond13	Cond14	Cond15
	0.8	Cond16	Cond17	Cond18	Cond19	Cond20
	0.6	Cond21	Cond22	Cond23	Cond24	Cond25
	$X_L = 0.2$					
	Q(p.u.) P(p.u.)	-0.8	-0.5	0	0.5	0.8
	1.28	Cond26	Cond27	Co. d28	Cond29	Cond30
	1.26	Cond31	Cond32	Cond33	Co. d34	Cond35
	1.0	Cond36	Cond37	Cond38	Co. d39	Cond40
eri	0.8	Cond41	Cond42	Cod43	Cond44	Cond45
16	0.6	Cond46	Cond47	Cond48	Cond49	Co. (150

9/21/2016

* *KC* can be found to satisfy all of fifty LMIs by running the following CVX code in MATLAB.

```
cvx_begin sdp
      variable X(n,n) symmetric
      variable Y(1,n)
      X*A1'+ Y'*B'+A1*X+B*Y+X*beta <=0
      X * A2' + Y' * B' + A2 * X + B * Y + X * beta <=0
      X>=eye(n)
      cvx end
      KC=Y*inv(X)
KC =
   1.0e+03 *
    0.0080 7.6136 -0.1016 -0.0004
```

Case Study

*Comparison of eigenvalues
*Case 1: no PSS
*Case 2: conventional PSS
*Case 3: robust PSS
*Nonlinear simulation results
*Case 2: conventional PSS
*Case 3: robust PSS

Comparison of Eigenvalues

* Closed-loop eigenvalues under selected 10 conditions.

	Eig 1, 2	Eig 3,4			
Cond1	-4.2411 &-9.3056	-8.7674 ±53.0810i			
Cond7	$-6.5566 \pm 2.6118i$	-8.9842 ±53.0798i			
Cond15	-3.4965 ± 7.99621	-12.0443 ± 53.16541			
Cond17	$-6.2844 \pm 2.6568i$	-9.2564 ±53.0578i			
Cond22	$-5.9135 \pm 2.8572i$	-9.6273 ±53.0474i			
Cond28	$-8.6645 \pm 4.6601i$	-7.0430 ±53.3120i			
Cond31	-6.2087 ± 7.9191i	-9.4988 ±53.0371i			
Cond39	$-7.1413 \pm 7.6704i$	-8.5662 ±53.0953i			
Cond43	$-7.1527 \pm 5.3502i$	-8.5547 ±53.1131i			
Cond50	-3.4588 ± 9.2725i	-12.2486 ±53.1455i			

Case 2: EXERCITY ENRORMANE PSS $\tau=0.001; \gamma=0.1$

Nonlinear Simulation Results

*Calculating initial values based on Cond1 and Cond7 *Step change on input, 0.01*p.u*..

Nonlinear Simulation Results Conventional PSS

* The right plot showed that the system became stable after a transient while the left plot presented an unstable system.

* The oscillation frequency was around 5.10*rad/s* (0.81*Hz*).

 $-0.2979 \pm 5.0637i$

 $0.9911 \pm 4.7780i$

Nonlinear Simulation Results Robust PSS

* The system was stable under both of conditions.

* Robust PSS has the faster response speed and smaller oscillation. Conventional PSS Robust PSS

Cond 7: -0.8991 & 597.6656 -0.2079 ±53008317)i

0.96 Vref 0.9 0.955 q 9.5 10 10.5 11 11.5 12.5 13 0.955 0.9549 9.5 10 10.5 11 11.5 12 12.5 13 x 10⁻³ -10 -15 9 9.5 10 10.5 11 11.5 12 12.5 13 7. ^(O) 73.995 73.99 9.5 10 10.5 11 11.5 12 12.5 13 З 9.5 10.5 11.5 12.5 10 11 12 13 1.26 2598 9.5 10 10.5 12.5 9 11 11.5 12 13 Time (sec)

> Cond 7: -6.5566 ± 2.6118*i* -8.9842 ±53.0798*i*

Conclusion

* Better robustness because of multiple operation conditions considered.

* The control design is based on LMI solving using convex programming tools.

Thank you!