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Abstract—This paper reviews the types of cyber attacks in
state estimation as well as detection and protection schemes.
Recent studies show that adversaries can not only generate attack
vectors, which can bypass the conventional detector, but can also
optimize the attack vector to compromise least number of sensors.
We examined four types of attack in state estimation process.
Then, we examined least effort false data injection attack on
how to find the optimal attack vector. Based on the analysis, we
implement χ2 detector and Euclidean distance detector to detect
attacks. We propose an effective way to protect power system
sensors. The case studies are based on a 5-bus system and IEEE-
14 bus system. It shows that least effort attack can make most
significant deviation of state estimation by compromising least
number of sensors. χ2 detector can detect random data injection,
bad data injection and DoS attack. However, false data injection
can bypass conventional statistical detector, such as χ2 detector.
Euclidean distance detector can detect false data injection.

Index Terms—Cyber attacks, power grid, state estimation

I. INTRODUCTION

Power grid is a cyber-physical system (CPS) that consists of
electrical equipments and communication systems. It supplies
electric power through power transmission and distribution
networks to large geographical areas. The Supervisory Control
and Data Acquisition (SCADA) system in power system can
collect power system measurements, monitor and control the
power system. The control center can use these data to estimate
state variables of the power grid so that the power system
situation awareness and security will be enhanced. The sensors
in power system measure three-phase instantaneous voltages,
currents and their phasors. These data will be sent to the con-
trol center through a communication system. State estimation
will be carried out in the control center. The estimates will be
used to generate appropriate commands to control the system.

State estimation computes state variables in real-time based
on meter measurements in the field. If the control center
receives wrong measurements due to cyber attacks, wrong
state estimation will be made. In turn, wrong decisions will
be made, which might cause the system to collapse.

To achieve a high reliability and security level, the robust-
ness of the communication system in the power grid should
be improved [3], [4]. In this paper, we assume that the power
system is running in steady state, and there is no load change
or fault. We will use DC power flow model to represent the
power system.

Most existing attacks are DoS attack, random data injection
and bad data injection, since these three types of attack are
easy to generate. These attacks can be detected by statistical
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detectors, such as χ2 detector. However, if the adversary knows
the configuration and information of the power system, he can
technically generate false data attacks [5], which can bypass
the χ2 detector. The adversary can even find the most optimal
attack vector to compromise least number of sensors.

For false data injection, Euclidean Distance detector [1] has
been proposed to check the deviation at each estimation step.
Based on the previous analysis, we propose an efficient method
to protect least number of sensors and to detect most false data
injection attacks based on the power system topology.

This paper is to 1) verify the effect of cyber attacks
on hypothesis testing and indicate that false data injection
cannot be detected by conventional hypothesis detection, 2)
present least effort false data injection, 3) show that Euclidean
Distance detector can detect false data injection, 4) prove
how to most efficiently protect sensors to mitigate false data
injection. The case study is based on a 5-bus system and IEEE-
14 bus system.

This paper is arranged as follows. Section II explains Least
Square Estimation (LSE) and Weighted Least Square (WLS)
state estimation. Attack models are also presented. Section III
introduces two types of detection, χ2 detection and Euclidean
Distance detection. A protection method is also presented in
this section. Case studies and conclusion are presented in
Section IV and Section V.

II. STATE ESTIMATION AND CONVENTIONAL χ2

DETECTION

This section will present LSE and WLS estimation in
power systems. The mechanism of statistical detection is also
explained. This detector can detect random data injection, bad
data injection and DoS attacks.

A. State Estimation in Power Systems

Usually, a power flow model is a set of equations that
indicate the running state of the power grid. The estimation
process can be formulated as follows [2]:

z = h(x) + e, (1)

where z is the measurement vector, x is the state vector, e
is zero-mean variable vector that in Gaussian distribution and
h(·) is a function. There are two types of estimation models:
AC power flow model and DC power flow model.

AC power flow model is a set of equations that represents
the relationship between voltage phasors and active/reactive
power. This type of model is nonlinear model. h(x) is a
nonlinear vector function, since the active and reactive power
can be derived by the following equations [2]:
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Pij =
ViVj
Xij

sin(θi − θj), (2)

Qij =
ViVj
Xij

cos(θi − θj) (3)

where Vi is the i-th bus voltage magnitude and θi is the i-th
bus phase angle. The power injection at bus i can be derived
by [2]:

Pi =
∑
j∈ℵi

Pij ,

Qi =
∑
j∈ℵi

Qij , (4)

where ℵi refers to the adjacent buses to Bus i, Pij is the active
power flow from bus i to bus j, Qij is the reactive power flow
from bus i to bus j, Pi is the active power injection at bus i,
Qi is the reactive power injection at bus i, Xij is the reactance
of branch between bus i and bus j, θi and θj are the voltages
phase angles of buses i and bus j.

DC power flow model can approximate the AC power flow
model. In this scenario, voltage magnitudes are assumed to be
1 per unit and angle difference of two connected buses are very
close to each other. By doing so, all shunt elements, bus and
branch and reactive power flow can be ignored in estimation
process. So (4) can be linearized and rewritten by [2]:

Pij =
θi − θj
Xij

(5)

Pi =
∑
j∈ℵi

Pij , (6)

Measurements usually include the power flows Pij and power
injections Pi. The state variables include the phase angles θi.

z = Hx+ e (7)

where z ∈ Rm and x ∈ Rn. The coefficients matrix
H ∈ Rm∗n. In DC-model, Hm×n represents the relationship
between the measurement vector and the state variable vector.
H is a constant matrix. ei ∈ R(i = 1, 2, 3...m) can be seen as
zero-mean variables that in Gaussian distribution, which can
be written as ei ∼ (0,Σ).

1) Least Square Estimation (LSE): In LSE estimation pro-
cedure, the objective is to find x̂ that minimize J(x) =
(z −Hx)T (z −Hx).

2) Weighted LSE: In WLS estimation procedure, error
variances need to be considered. The objective is to find x̂
that minimizes J(x) = (z −Hx)T Σ−1(z −Hx), where Σ−1

is a diagonal matrix with its element the reciprocals of the
variances of meter errors. x̂ can be found from the normal
equation:

x̂ = (HT Σ−1H)−1HT Σ−1z.

J(x) is the cost function, which can be seen as the square
of the norm 2 of the residual vector r (r = z − Hx̂,
J = rT Σ−1r). It represents the estimation performance
indication. Notice (HT Σ−1H) could be singular if some
measurements are assumed to be very accurate. In that case,

we cannot use normal equation to find the estimate. Instead,
QR decomposition method will be used to avoid conducting
matrix inverse.

The original estimation model is first converted to

Wz︸︷︷︸
z′

= WH︸︷︷︸
H′

x+ We︸︷︷︸
e′

,

where W 2 = Σ−1, WT = W . We can find that the modified
error from every meter has the same accuracy: We ∼ (0, I).

Consider H ′ = QR (Q ∈ Rm×m is an orthogonal matrix
QTQ = I and R ∈ Rm×n is an upper triangular matrix), the
estimate will be derived as:

x̂ = (H
′TH ′)−1H

′T z′

= (RTQTQR)−1RTQT z′

= (RTR)−1RTQT z′

⇒ RTRx̂ = RTQT z′

⇒ Rx̂ = QT z′ (8)

(8) indicates that matrix inverse is avoided. This paper uses
CVX [6] toolbox in Matlab to implement state estimation,
where QR decomposition based solving is automatically em-
beded. The CVX code shows as below:

function [X, J] = fun_LSE(Z, H);
cvx_begin %quiet
variable X(14,1)
minimize ((Z-H*X)’*(Z-H*X))
subject to
X(1) ==0;
cvx_end
J = ((Z-H*X)’*(Z-H*X));
return

In this code, X define as the state variables, J defineed as the
system cost value. Z represents measurements vector that is
measured from sensors embed in power grid. H is the Jacobian
matrix of the power system. Because we set bus 1 as the
reference bus, so the phase angle at bus 1 is 0◦ (degree).

B. Attack Models

Usually, the communication system in the power system
may be subjected to the following attacks:

1) Random Noise Injection: The attack vector is a random
noise attack.

2) Bad Data Injection: In these cases, the adversary injects
non-designed data to the original measurements vector. The
vector can be injected at any point in time and it could be a
long term continuous attack or short term attack. Notice that,
the mean value and covariance of random attack vector should
be much larger than the normal noise. In this paper, we add a
random attack vector or unchanged vector to the measurements
to arbitrarily test its performance.

3) DoS Attack: The denial-of-service (DoS) attack is gen-
erated by jamming the communication channels, flooding
packets in the network, and compromising devices to prevent
data transfer, etc. by the adversary. The DoS attack could be
on sensor data, control data, or both. In this paper, we model
the DoS attack as the lack of available sensor data [1].



3

C. χ2 Detection

In random data and bad data injection attack, because the
attack vectors are not designed by the adversary, injected
data may not be of the same dimension of z. In that case,
the detector will trigger an alarm. If the system under DoS
attack, the communication will be interrupted, which means
the control center can not receive all the measurements data.
If the range of bad injected data is same as the measurements
vector z, the control center will use these polluted data to
compute the wrong state variables. For these two type of
attack, we can use χ2 detector to test its cost function J(x).
Since z ∈ Rm and x ∈ Rn, the freedom degree of ‖z−Hx‖ is
m−n. From χ2 table, we can set a threshold τ for hypotheses
test. If the cost function value larger than the threshold, the
system is under attack.The threshold can easily be obtained
from the χ2-table. If J(x̂) > τ , we can say there is an attack
vector added to the measurements vector [5]. The following
figure shows χ2 different probability density functions in
different freedom degrees from 1 to 9.

Fig. 1: χ2 Probability Density Function [7]

III. FALSE DATA INJECTION ATTACK

If the adversary knows the configuration and information of
the power system, he/she can design an attack vector to evade
detection. The control center will get wrong state variables,
and these wrong state variables can bypass conventional statis-
tical detector. With previous knowledge, Hx is a linear vector
function, which satisfy distributive property and associative
property. If there is an attack that inject an attack vector a, the
measurements vector becomes za = z+ a. The control center
will receive this manipulated vector and use it to process the
estimation. To calculate the cost function that under attack,
we define x̂f = x̂ + c, x̂ as the original estimated state
variables vector and c as the malicious error added to the
original estimates. Then the following equation of new cost
describes why false data injection can bypass χ2 detector [2]:

‖za −Hx̂‖2Σ−1 = ‖z + a−H(x̂+ c)‖2Σ−1

= ‖z −Hx̂+ a−Hc‖2Σ−1

= ‖z −Hx̂‖2Σ−1 when a = Hc (9)

where ‖·‖2Σ−1= (·)T Σ−1(·).

This equation shows that the cost function will not change
if there is a designed attack vector a that satisfy a = Hc
injected to the measurements vector. This type of attack will
bypass the detector. If the adversary needs to change some
state variables, he/she can compute the attack vector by using
the H matrix.

A. Least Effort False Data Injection

Least effort false data injection [2] is a method to find
the most optimal false data attack vector. In this paper, we
assume there is 1 meter on each bus to measure its power
injection and 2 meters on each branch to measure its power
flow. These measurements are constitutes of the measurements
vector z. The purpose of least effort attack is to find the
sparest attack vector a with most zero elements and satisfies
the vector function a = Hc. By doing so, the adversary can
attack least number of sensors to get most deviation change
of state variables. Referring to the previous knowledge, the
adversary needs to know the topology and configuration of the
power grid. (The adversary needs to find the sparsest attack
vector to pollute the minimal sensors.) Since the system has
n buses, considering that the adversary need to attack k state
variables, k ≤ n. The sparsest attack vector should satisfies
the vector function a = Hc. Then the problem is to minimize
the numbers of nonzero element in attack vector. This problem
can be formulated as follows.

min
c

‖Hc‖0
s.t ‖c‖0= k (10)

If there are k state variables that need to manipulate in an n-
bus system, let Γ = i1, i2, i3...ik, be the adjacent sensors, gΓ
be the number of sensor measurements to be compromised,
and c1 6= c2 6= c3 6= ...ck 6= 0 are the number of nonzero
elements [2]:

gΓ = k + 3

ik∑
i=i1

|Qi|−
ik−1∑
i=i1

ri − q (11)

where the k is the state variables that need to be manipulated,
Qi is the adjacent buses which do not belong to Γ, ri is the
number of buses that are connected to bus i and j(i ∈ Γ, j > i)
together, and q is the number of buses that |Qi|= 0 in Γ. Based
on equation (10), the malicious measurement can bypass the
χ2 detector only if a = Hc. If the c = (...ci1...ci2...cik...)

T ,
Γ = {i1, i2, ..., ik}, the attack vector a can be represented as
: 

...
ai1

...
aigΓ

...


︸ ︷︷ ︸

a

=


H11 · · · · · · H1n

H11 · · · · · · H2n

...
. . . . . .

...
Hm1 · · · · · · Hmn


︸ ︷︷ ︸

JacobianMatrix



...
ci1
...
cik
...


︸ ︷︷ ︸
error

(12)

Since H matrix is a m× n matrix and can be separated into
two parts. First part is row 1 to n, this part defines the power
injection at each bus. Second part is row n + 1 to m, which
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defines the power flow form bus i to bus j. We will use an
example to explain the least effort false data injection.

B. Example

Here, we give a 5-bus system to demonstrate this theory.
The topology of 5-bus system is shown below, black points
show the state variables that are under attack:

Bus 1

Bus 2

Bus 3 Bus 4

Bus 5

(a) a

Bus 1

Bus 2

Bus 3 Bus 4

Bus 5

(b) b

Bus 1

Bus 2

Bus 3 Bus 4

Bus 5

(c) c

Fig. 2: Three scenarios of attacks.

In these scenarios, we set k = 2, which means that the
adversary needs to change two state variables in x. In example
a, if the adversary wants to change θ1 and θ3 (Γ = {θ1, θ3}),
then the adjacent buses of Bus 1 are Bus 2 and Bus 3.
However Bus 3 belongs to Γ, therefore |Q1|= 1. Similarly
|Q3|= 2 (Bus 4 and Bus 2 are connected to Bus 3). There is
only one bus connected to both Bus 1 and Bus 3, therefore
r1 = 1. The number of measurements he needs to change
is k + 3|Q1|+3|Q3|−r1 − 0 = 10. Ten sensors need to be
attacked to change θ1 and θ3. The sensors that need to have
nonzero elements injected are at bus 1, bus 2, bus 3, bus 4,
branch 1-2, branch 2-3 and branch 3-4. For help understanding,
the following table shows some examples in the IEEE 5-bus
system when k = 1 and k = 2.

TABLE I: Least Effort Attack Model for a Five-bus System

Γ
z Number Sensors to be attacked

θ2 13 Bus 1, 2, 3, 4, 5, Branch 1-2, 2-3, 2-4, 2-5
θ4 10 Bus 2, 3, 4, 5, Branch 3-4, 2-4, 4-5
θ5 7 Bus 2, 4, 5,Branch 2-5, 4-5
θ1, θ3 10 Bus 1, 2, 3, 4, Branch 1-2, 2-3, 3-4
θ3, θ4 12 Bus 1, 2, 3, 4, 5, Branch 1-3, 2-3, 2-4, 4-5

From these table, we know that, when k = 1, changing
state variables of bus 5 is more optimal than changing state
variables of bus 2 and 4, when k = 2, changing state variables
of bus 1 and 3 is more optimal than changing state variables of
bus 3 and 4.. If we list all combinations of Γ, we will get the
most optimal attack vector that contains most zero elements.

IV. ATTACK DETECTION AND PROTECTION

Equation (10) shows that the χ2-detector may not to de-
tect the false data injection attack. Thus, we introduce the
Euclidean Distance detector in the following section.

A. Euclidean Distance detector

χ2 detector can detect random data injection, bad data
injection or DoS attack, because with those data injection, the
distribution of measurements vector will change significantly,
the cost function will also change significantly. However, false

data injection can not be detected by conventional statistical
detector. The principle has been proved by equation (10).

For this type of manipulated data injection, it can be
detected by using Euclidean distance detector. Euclidean can
detect the distance deviation between measurements vector and
estimated measurements vector, which can formulated by [1]:

d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 + ...+ (pm − qm)2

(13)

Where pi, i = (1, 2, ...,m) is the k step estimated measure-
ments and pi, i = (1, 2, ...,m) is the k − 1 step estimated
measurements. For each step, the estimator in control center
will process measurements vector p = zmk

and give out the
optimal state variables vector x̂ to make the minimal residual
between estimated measurements and original measurements.
For each step, the detector will compare measurements vector
zmk

and zmk−1
. Because measurements z are measured from

wide area, it collect data from thousands sensors. Even if the
adversary change measurements at each sensors marginally,
the sum of thousands measurements will show great differ-
ence. If the d(p, q) change suddenly, it means there is a
injected vector. We also can set a hypotheses test that the
threshold τ is based on history data. If the difference between
the measurements and the estimated data is larger than τ , the
detector will trigger an alarm, which means the measurements
data is under attack. In this case, the threshold need to be
choose carefully, because if the threshold is too large, some
false data may bypass the detector, while if the threshold is
too small, the misjudgment ratio of the detector will increase.
The following figure shows the performance of the Euclidean
Distance detector in the 5 bus system. At step 20, a false
data vector is injected into the measurement. At step 50, this
vector was taken away. We will see two spikes in Fig. 3: one
at step 20 and the other at step 50, all due to the change of
measurement vector.
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Fig. 3: Euclidean Distance Detection when false data injected
at step 20 and end at step 50.
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B. Protection

A power system is a large geographical area and contains
thousands of sensors. Sensor protection cost a lot due to its
large number. So we need to choose a small set of sensors for
protection against false data injection.

As mentioned above, we assume there is 1 meter on each
bus and 2 meters on each transmission line in DC model.
It can be seen from equation (12), the largest factor to gΓ

is 3
ik∑

i=i1

|Qi|, which means that state variables at the buses

that has more connections can not be choose as the optimal
solution. Hence, for a given k, when Γ represents a set of
buses with more connections to each other and connected to
the least number of buses beyond Γ, the gΓ will be smaller.
So, the attack measurements elements need to choose the buses
that are geographically close to each other [2].

We use IEEE 5 bus system to illustrate our protection
strategy. In IEEE 5 bus system, bus 2 is connected to bus 1,3,4,
and 5. If the adversary want to change the state variable of bus
2, he need to compromise the sensors of power injection P1,
P2, P3, P4 and P5, and power flows P12, P21, P23, P23, P32,
P24 and P42. In other words, if the sensor on bus 2 is protected,
the adversary has no chance to change state variables of bus
1,2,3,4, and 5. If we protect power flow meter on transmission
line P12, only the state variables of buses 1 and 2 are protected.
Based on this analysis, we have a conclusion that the sensors
on buses that has more geographical connection are more
”important”, the sensors that measure bus power injection are
more ”important”. If we focus on protecting these sensors, the
cost of protection will be more optimal.

V. CASE STUDY

The study system is based on IEEE 5 bus system and
IEEE 14 bus system. IEEE 5-bus system and 14-bus system
parameters can be obtained from MATPOWER cases. The case
study for 5-bus system is shown in Table II. The case study for
the 14-bus system is shown in Table III. Since in DC power
flow model, we ignore the power consumption on transmission
line, power generation should equal to power demand. So, we
add 0.134 p.u. power at bus 5 to make total power generation
equal to power demand.

We applied different attacks in these two systems. For
random data injection, we inject an attack vector that follows
Gaussian distribution, the mean value is about 50% of the
measurements. For bad data injection, we inject unit vector to
the measurements. For bad data with random data injection,
we combined these two type of attack vector together. For false
data injection, we added 0.1 to each state variables, and the
attack vector can be computed based on H matrix. For DoS
attack, we added some opposite numbers to the measurements
to simulate that the control center can not receive some
measurements. For IEEE 5 bus system, we assume the first 6
measurements are under DoS attack. For IEEE 14 bus system,
we assume the first 7 measurements are under DoS attack.

The attack vector and cost function are listed in Table II and
Table III. For IEEE 5-bus system, there are 5 state variables
and 11 measurements. So, its freedom degree is 11− 5 = 6.

For IEEE 14-bus system, there are 14 state variables and 34
measurements, so its freedom degree is 20. Table IV shows
percentage points of the χ2 distribution, when freedom degree
is 6 and 20. From the χ2 distribution table and the data we
get in case studies, we can see that random data injection,
bad data injection and DoS attack change the cost function
significantly, which means that these attack can not bypass
the χ2 detector. False data injection changes the cost function
value marginally, so it can bypass χ2 detector.

For false data injection, we use Euclidean distance detector
to detect it. We set 100 steps for estimation process and apply
false data injection attack beginning at step 20 and ending at
step 50. The following figures shows that Euclidean distance
detector detects the distance deviation changed at step 20 and
step 50. If we set the threshold τ = 0.05, the detector will
trigger alarm at step 20.
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0.02
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0.06

0.08

0.1

0.12

0.14

0.16

0.18

Fig. 4: Euclidean Distance Detection when false data injected
at step 20 and end at step 50.

VI. CONCLUSION

There are three conclusions from this paper.
1) χ2 detector can detect random data attack, bad data

injection and DoS attack. However, false data injection attack
can bypass it, because the attack vector is statistical optimized.
The Euclidean distance detector can detect false data injection
because with false data injection, the measurements vector will
have distance deviation change. 2) To manipulate same number
of state variables, least effort false data injection attack can
compromise least sensors to escape detection. 3) The buses
which have more geographical connections is more important.
By protecting sensors on these buses, the system will be
protected more effective.
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