
1

Distributed DC Optimal Power Flow for Radial
Networks Through Partial Primal Dual Algorithm

Vahid Rasouli Disfani, Student Member, IEEE, Lingling Fan, Senior Member, IEEE, Zhixin Miao, Senior Member,
IEEE

Abstract—In a smart grid platform, where more distributed
resources are joining everyday and each of them wills to keep
its own privacy and shares as less information as possible
with the grid management, there is a motivation for transition
from the current centralized structures to more distributed
ones. In this paper, a distributed method is presented to solve
DC Optimal Power Flow (DC-OPF) for radial networks based
on partial Primal-Dual algorithm. The algorithm development
process starts from an economic dispatch (ED) problem, derives
a distributed ED, and finally makes a bridge from the distributed
ED formulation to a distributed algorithm for DC-OPF. It is
proved in the paper that the optimal solution of the distributed
algorithm complies with the necessary and satisfactory KKT
conditions of DC-OPF problem. The algorithm is tested on a
radial power network with and without network congestion,
where the results converge to the optimal solution.

I. INTRODUCTION

S IGNIFICANT increase in amount of private distributed
energy resources such as renewable energy resources,

energy storage systems, distributed generations, and price-
responsive demands is expected in the future smart grid.
Not only will it lead to a competitive environment in power
system, but also it will introduce a huge volume of control
variables in the entire power network. Further, private agents
are generally not willing to reveal their own control variables
and economical data due to either privacy or economical
reasons. These two facts have motivated the recent interest
in distributed methods in power systems.

Optimal power flow (OPF, AC-OPF), which determines
the most economic schedule to operate generation units and
controllable demands in a power network, has always been
a challenging problem in power system operation due to its
inherent nonlinearity and nonconvexity. Several works are
reported in the literature to tackle the OPF problem in a
distributed fashion [1]–[5]. All of these algorithms separate
the entire network into several sub-networks, each of which
solves its own OPF problem at each iteration mostly using
interior point method. These algorithms then develop an
information flow scheme and an update process to push the
solution toward the optimal solution. In [1], coarse-grained
distributed implementation is used to parallelize the OPF
problem, which is extended in [2] and compared to some
other distributed approaches. Alternative-Direction Method of
Multipliers (ADMM) is employed in [3] to develop distributed
OPF solution. The same method (ADMM) is used in [4]
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to determine a distributed method for semi-definite program-
based (SDP-based) formulation of OPF problem, which is
first proposed in [6]. A modified subgradient-based method
along with Lower-Upper-Bound-Switching (LUBS) method
is presented in [5] for distributed AC-OPF problem. In the
LUBS method, the microgrids update their desired prices
based of which the main grid iteratively defines its optimal
power export/import level from each microgrid. The main grid
also compares the upperbound and lowerbound of the optimal
solution to guarantee zero duality gap of the final solution.

Several distributed algorithms have been presented for
economic dispatch and DC-OPF problems. A gradient-based
approach along with consensus-based update process using
center-free algorithms [7] is employed in [8] to develop a
distributed platform for online optimal generation control or
economic dispatch. In fact, the gradient-based method guar-
antees the power balance in the entire network using local
frequency signal while the consensus-based process unifies
all the locational marginal prices (LMP) on their unique final
values. The center-free algorithms have fast convergence speed
but are not appropriate for DC-OPF problems because they
cannot address the difference between nodal prices due to
line constraints. Thus, a subgradient method is employed to
develop the consensus-based update process for distributed
DC-OPF problems in [9]–[11]. The idea of separating the
entire network into some sub-networks, which is widely used
to develop distributed AC-OPF solutions, is also practiced
for distributed DC-OPF problems in the aforementioned ref-
erences. At each iteration, each sub-network (agent) solves
its own DC-OPF problem locally; then, a pricing mechanism
employing subgradient method updates the price using the
information gathered from the neighbors, and iterations con-
tinues until convergence is met. The most distributed way to
define these sub-networks is to consider each bus of the system
as a distinct agent, which is proposed in [12]. In this algorithm,
which is developed based on subgradient method, each bus
defines its optimal power generation level and updates its own
multipliers, shares some data with its neighbors, and continues
to iterate until global convergence is reached.

In this paper, a distributed algorithm considering each bus
as a distinct agent is proposed to solve DC-OPF problem for
radial networks. The algorithm adopted in this paper is par-
tial primal-dual algorithm, which guarantees the convergence
rate toward globally optimal solution for uniformly convex
problems [13] and has several advantageous features for radial
networks. Compared to dual decomposition based algorithms,
where sub-optimization problems are solved given Lagrange
multipliers, in a primal-dual algorithm, there is no optimization
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carried out for sub-problems. Instead, an updating procedure
is adopted to update the control variables. Compared to center-
free algorithm, the update process in the proposed algorithm
has physical meaning of price updating and is able to address
the nodal price differences due to network constraints. It is also
faster than the algorithm proposed in [12] due to less volume
of updating processes, especially on the Lagrange multipliers
of inequality constraints.

The partial primal-dual algorithm has been employed in
[14], [15] to explain that the droop control is aligned with
a primal-dual process. Our development process starts from
economic dispatch problem and applies dual decomposition
techniques to extract a distributed economic dispatch. After
applying primal decomposition technique to the distributed
economic dispatch problem, we further develop a distributed
DC-OPF algorithm. The solution sought by the algorithm
is proved to be optimal since it satisfies the necessary and
satisfactory KKT conditions of the DC-OPF problem for radial
networks. In order to demonstrate its efficiency, the algorithm
is tested on a radial power network (a modified version of
IEEE 9-bus test system).

The rest of the paper is organized as follows. Section II
explains the DC-OPF problem formulation and KKT necessary
conditions. The distributed DC-OPF algorithm is described in
Section III. Section IV provides the simulation results. Section
V concludes the paper.

II. DC-OPF AND KKT CONDITIONS

Consider a power network containing several generators
and controllable loads. The network has finite numbers of
buses belonging to N and finite numbers of branches (edges)
belonging to E . The numbers of nodes and branches are then
|N | and |E| respectively. Generation, demand, and voltage
angle on bus i ∈ N are denoted by Pgi, Pdi, and θi, whereas
the power flow on line (i, j) ∈ E from node i to j is called
Pij .
A typical formulation of DC Optimal Power Flow is presented
below.

a) DC-OPF:

maximize W (Pg,Pd) =
∑
i∈N

Ui(Pdi)− Ci(Pgi) (1a)

over: Pg,Pd,PL, θ

subject to:
∑
i∈N

Pgi =
∑
i∈N

Pdi (1b)

Pgi − Pdi =
∑

j:(i,j)∈E

Pij (1c)

Pgi ≤ Pgi ≤ Pgi ∀i ∈ N (1d)

Pdi ≤ Pdi ≤ Pdi ∀i ∈ N (1e)
Pij + Pji = 0 ∀(i, j) ∈ E (1f)

− Pij ≤ Pij ≤ Pij ∀(i, j) ∈ E (1g)

Pi,j =
θi − θj
xij

∀(i, j) ∈ E (1h)

θ0 = 0 (1i)

where Pg = {Pgi : i ∈ N}, Pd = {Pdi : i ∈ N},
PL = {Pij : i ∈ E}, and θ = {θi : i ∈ N}. Besides, (1a)
describes the objective function so as to maximize the welfare
in the entire network, (1b)- (1c) denote total and nodal power
balance, and (1d)-(1e) explain the inequality constraints on
power generation and demand. (1f) guarantees the network to
be lossless, and line capacity limits are also explained by (1g).
(1h) describes the line power in terms of the voltage angles
of the buses across each line. (1i) fixes the voltage angle of
the slack bus on zero.

Remark 1: Although the constraint (1b) holds if the con-
straints (1c) and (1f) satisfied, it is mentioned here to make
emphasis of total power balance. Likewise, (1f) is mentioned
to be emphasized though it is explicitly guaranteed by the
constraint (1h).

Remark 2: As the equality constraints are affine functions
and the inequality constraints are continuously differentiable
convex functions in the optimization problem (1), the feasible
solution set is a convex set.

Condition 1: Assuming that the generation cost function
Ci(Pgi) and the demand utility function Ui(Pdi) are respec-
tively strictly convex and strictly concave for any i ∈ N , the
welfare function is strictly concave. Therefore, the problem
(1) is a convex optimization problem.

Remark 3: If DC-OPF is defined over a radial power
network, any vector PL can be mapped on a unique vector
θ where θ0 = 0. Therefore, removing the constraints (1h)-(1i)
does not affect the optimal solution of the DC-OPF problem
described in (1) for a radial power network, so the constraints
(1h)-(1i) are neglected in the DC-OPF problem, hereafter.

According to Karush-Kuhn-Tucker (KKT) conditions, if the
solution (P∗g,P

∗
d,P

∗
L) is a local optimum of (1), it necessarily

satisfies the following regulatory conditions,

Stationary:∑
i∈N

{
∂Ci
∂Pgi

(P ∗gi)− (λi − µgi + µgi)

}
= 0 (2a)

∑
i∈N

{
∂Ui
∂Pdi

(P ∗di)− (λi + µdi − µdi)
}

= 0 (2b)

Complementary slackness:

µgi(Pgi − Pgi) = µgi(Pgi − Pgi) = 0 ∀i ∈ N (2c)

µdi(Pdi − Pdi) = µdi(Pdi − Pdi) = 0 ∀i ∈ N (2d)

Dual feasibility:
min{µgi, µgi, µdi, µdi} ≥ 0 ∀i ∈ N (2e)

Primal feasibility:
(1c)− (1g) (2f)

where the vector λ ∈ R|N | denotes Lagrange multipliers
corresponding to the constraint (1c), and the vectors µ ∈ R|N |
and µ ∈ R|N | are Lagrange multipliers of the inequality
constraints (1d)-(1e).

Due to the convexity of the original problem (1), the KKT
necessary conditions described in (2) are also sufficient for
optimality of (P∗g,P

∗
d,P

∗
L).
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III. DESIGN OF DISTRIBUTED DC-OPF

Consider a new optimization problem which is defined
same as the optimization problem (1) if the constraints cor-
responding to the lines i.e. (1c),(1f)-(1i) are neglected. The
new optimization problem is exactly the problem of Economic
Dispatch as defined below.
Economic Dispatch (ED):

minimize
∑
i∈N

Ci(Pgi)− Ui(Pdi) (3a)

over: Pg,Pd

subject to:
∑
i∈N

Pgi =
∑
i∈N

Pdi (3b)

Pgi ≤ Pgi ≤ Pgi ∀i ∈ N (3c)

Pdi ≤ Pdi ≤ Pdi ∀i ∈ N (3d)

Note that (3b) does not require the nodal power balance
of generation and demand, but only balance across the entire
network. If the Condition 1 holds for the objective function
(3a), the optimization problem (3) is also convex.

The dual representation of (3) is

max
λ

∑
i∈N


min
Pgi,Pdi

Ci(Pgi)− Ui(Pdi) + λ(Pdi − Pgi)

s.t. Pgi ≤ Pgi ≤ Pgi
Pdi ≤ Pdi ≤ Pdi

︸ ︷︷ ︸
Φ†

i (λ)

where the optimal solution of the minimization problem can
be explicitly defined as

Φ†i (λ) := Ci(P
†
gi)− Ui(P

†
di) (4)

with

P †gi(λ) :=
[
MC−1

i (λ)
]Pgi

Pgi
(5)

P †di(λ) :=
[
MU−1

i (λ)
]Pdi

Pdi
(6)

where MCi(Pgi) = ∂Ci

∂Pgi
and MUi(Pdi) = ∂Ui

∂Pdi
are the

marginal cost and marginal utility corresponding to bus i, and
[·]ba denotes max{min{·, b}, a} for a, b ∈ R, a ≤ b.

The objective function Φ†i (λ) is not separable across buses
i ∈ N since it has a scalar variable λ which is common
between all i ∈ N . The following distributed version of the
dual problem is proposed in this paper by introducing the
vector λ := (λi, i ∈ N ). The variables λi are constrained
to be equal for all i ∈ N at optimality i.e. λi = λj ∀i, j ∈ N .

A. Distributed Economic Dispatch

Distributed Economic Dispatch (DED):

max
λ

Φ(λ) :=
∑
i∈N

Φ†i (λi) (7a)

s.t. λi = λj ∀(i, j) ∈ E (7b)

Since the power network is assumed to be a connected grid,
it is enough to define the constraints (7b) across the lines.

The following two results suggest solving the distributed
optimization problem (7) rather than ED. The unique optimal
point (P ∗g , P

∗
d ) will be then recovered from the unique dual

optimal λ∗. A proof has been provided in Appendix B of [15]
for these two results.

Lemma 1: The objective function Φ of DED is strictly
concave over R|N |.
Lemma 2:

i- DED has a unique optimal point (λ∗) with λ∗i = λ∗j =
λ∗ for all (i, j) ∈ E

ii- ED has a unique optimal point (P ∗g , P
∗
d ) where P ∗gi =

P †gi(λ
∗) and P ∗di = P †di(λ

∗).
Applying the Lagrange relaxation upon the equality con-

straints leads to the following Lagrange function of DED
which will be employed to derive a distributed solution.

L(λ, π) :=
∑
i∈N

Φ†i (λi)−
∑

(i,j)∈E

πij(λj − λi) (8)

where π ∈ R|E| is the vector of lagrange multipliers for the
equality constraints (7b). In fact, any multiplier πij measures
the cost of mismatch between λi and λj across the line (i, j) ∈
E . A partial primal-dual algorithm for DED takes the form
below for (7) and (8):

λi(k + 1) = λi(k) + γi
∂L

∂λi
(λ(k), π(k)) = λi(k)+

γi

P †di(λi(k))− P †gi(λi(k)) +
∑

j:(i,j)∈E

πij(k)

 (9)

πij(k + 1) = πij(k)− ξij
∂L

∂θij
(λ(k + 1), π(k))

= πij(k) + ξij(λj(k + 1)− λi(k + 1)) (10)

where γi and ξij are positive real numbers.

B. Distributed DC Optimal Power Flow

It is implied from the stationary point of (9) that P ∗di −
P ∗gi −

∑
j:(i,j)∈E π

∗
ij = 0 for any i ∈ N , which is identical

to the constraint (1c) if the π is identified by PL. Therefore,
the DC-OPF problem (1) can be recovered from distributed
economic dispatch by adding the following two constraints:

πij + πji = 0 ∀(i, j) ∈ E (11)

− Pij ≤ πij ≤ Pij ∀(i, j) ∈ E (12)

where (11) and (12) are identical to the constraints (1f) and
(1g), respectively. With these definitions, the parameters λi and
πij have the physical meanings of locational marginal price on
bus i ∈ N and power flow on line (i, j) ∈ E , which exclude
any information of the agents’ cost functions and maintain
their privacy.

Although the agents are required to follow specific in-
structions securing convergence, there is no need for them
to adopt same updating rules with same coefficients in a
cooperative algorithm. However, some parameters must be
meaningful before being fed back into the algorithm at the
next iteration. For example, the constraint (11) is automatically
satisfied if πij = −πji for any (i, j) ∈ E at initial point
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and the corresponding update coefficients are equal in the
entire process i.e. ξij = ξji for all (i, j) ∈ E . Since it is
not guaranteed by the agent to start from an ideal π or to
keep their own coefficients exactly equal to the neighbors’
parameters, the solution proposed in this paper to secure the
constraint (11) is applying a center-free-based update over πij
and −πji at each iteration i.e.

πij =
πij − πji

2
∀(i, j) ∈ E (13)

which are carried out by the agent i after receiving ξji from
its neighboring agents j : (i, j) ∈ E . The center-free-based
update method causes a coefficient equal to (ξij + ξji)/2 to
be applied to update both πij and πji at each iteration before
updating λ.

Replacing (10) which describes the update process of π with
the equation below would also satisfy (12).

πij(k + 1) = [πij(k) + θij(λj − λi)]
Pij

−Pij
(14)

Remark 4: All the necessary and sufficient conditions for the
optimality of (P ∗g , P

∗
d , P

∗
L) described in (2a)-(2f) are satisfied

by the proposed partial primal-dual algorithm. The conditions
(2a)-(2b) as well as the constraints (1d)-(1e) are satisfied by
(5)-(6) with the definitions below,

µgi := max
{

0,MC−1(Pgi)− λi
}

(15)

µgi := max
{

0, λi −MC−1(Pgi)
}

(16)

µdi := max
{

0,MU−1(Pdi)− λi
}

(17)

µdi := max
{

0, λi −MU−1(Pdi)
}

(18)

There is no need to change the communication network
to tackle the generation/demand capacity constraints in this
paper although some reconfigurations are introduced in [8]
as required actions for such a purpose. The dual feasibility
and complementary slackness conditions (2c)-(2e) are also
satisfied by (15)-(18). The equality constraints (1c) and (1f) are
satisfied by the stationary points of (9) and (13), respectively.

To summarize, the partial primal-dual algorithm described
by (9) and (13)-(14) solves the optimization below, which is
called Distributed DC-OPF due to its distributed properties.

Distributed DC-OPF:

min
π

max
λ

∑
i∈N

Φ†i (λi)−
∑

j:(i,j)∈E

πij(λj − λi)

 (19)

s.t. − Pij ≤ πij = −πji ≤ Pij

Algorithm 1 illustrates a distributed algorithm to solve the
DDC-OPF problem (19) through an iterative process.

IV. SIMULATION RESULTS

In order to demonstrate the efficiency of the algorithm
proposed in the paper, it is tested against a modified version
of IEEE 9-bus test system, including three generators on buses
1-3. This test system is a meshed network including only one
loop. In this study, the line between buses 4 and 9 is removed
to create a radial test system.The details of the cost functions
and limits of generation units are provided in Table I.

Algorithm 1 Distributed Algorithms for DC Optimal Power
Flow

initialize vectors λ and π
while Convergence is not met do

for all i ∈ N do
for all j : (i, j) ∈ E do

Receive λj from the neighboring agent j
Update πji using (14)
Send πij to the neighboring agent j

end for
end for
for all i ∈ N do

for all j : (i, j) ∈ E do
Receive πji from the neighboring agent j
Update πij using (13)

end for
Calculate Pgi using (5)
Calculate Pdi using (6)
Update λi using (9)
Send λi to the neighboring buses j : (i, j) ∈ E .

end for
Check Convergence

end while

TABLE I
DETAILS OF GENERATORS IN IEEE 9-BUS TEST SYSTEM

C(Pg) = aP 2
g + bPg + c

Gen # Bus # Pg Pg a b c

1 1 10 50 0.11 5 150
2 2 10 300 .085 1.2 600
3 3 10 270 .1225 1 335

The coefficients used for updating process are selected as γi
for any i ∈ N and ξij = 8 for any (i, j) ∈ E . The algorithm
starts the iteration from the initial values of λi = 0 for any
i ∈ N and πij = 0 for any (i, j) ∈ E .

A. Case 1: Without line congestion

This case is studied against the modified IEEE 9-bus test
system with the above-mentioned modifications. Fig. 1 depicts
the simulation results corresponding to this case study. The
algorithm converges to the optimal solution, which is bench-
marked against the results obtained by MATPOWER 4.1 [16],
in 200 iterations. As none of the network lines is congested in
this case, all locational marginal prices λ converge to a unique
price (λi = 27.71 $

MWhr ∀i ∈ N ), as illustrated in Fig. 1-a.
According to Fig. 1-b, The generator 1 provides its maximum
power output (Pg1 = 50 MW) to the system while the other
two generators are operated at Pg2 = 156 MW and Pg3 = 109
MW. Total power generation supplies the total power demand
with a cost equal to $5430.18. The power flow on the lines
are also provided in Fig. 1-c, where the line power Pij and
Pji are shown by solid and dashed lines but in the same color.

B. Case 2: With line congestion

In order to investigate the algorithm in congested networks,
the maximum power flow on the line between buses 7 and
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8 (L78) is assumed to be 10 MW. The algorithm proposed
converges to the same solution as MATPOWER suggests in
300 iterations. Fig. 2 illustrates the simulation results for this
case study. Unlike Case study 1, locational marginal prices at
different nodes are different due to line congestion. Locational
marginal prices of Buses 2, 8, ad 9 are equal to 24.15 $

MWhr
while this parameter on the other buses of the network is
32.85 $

MWhr , as shown in Fig. 2-a. In this case, generator 3
has to provide more power compared to the previous case
since generator 2 cannot transfer more power to supply the
load on bus 7 due to line congestion of L78. Therefore, power
generations of generators 2 is diminished to 135 MW while
that of the generator 3 is boosted upto 130 MW, as illustrated
in Fig. 2-b. The power on the lines are also shown in Fig. 2-c,
which obviously depicts that the power flow on the line L78 is
obviously restricted to the its maximum power limit on both
sides (P87 = −P78 = 10 MW). As expected, such binding
of the line constraint causes an increases in the total cost of
the network compared to the case 1, which is $5521.38 (1.7%
higher).
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Fig. 1. Simulation results of case 1: (a) Locational Marginal Price (LMP,
λ), (b) active power output of generators, (c) power flow on the lines.

V. CONCLUSION

A distributed DC-OPF solution has proposed in this paper
based on partial Primal-Dual algorithm. Each bus in the
power system is identified as a distinct agent. The algorithm
is developed by applying partial Primal-Dual algorithm to
economic dispatch problem. The algorithm is finally studied
against a radial power network for both congested and non-
congested conditions.

REFERENCES

[1] B. H. Kim and R. Baldick, “Coarse-grained distributed optimal power
flow,” IEEE Transactions on Power Systems, vol. 12, no. 2, pp. 932–939,
1997.

[2] ——, “A comparison of distributed optimal power flow algorithms,”
Power Systems, IEEE Transactions on, vol. 15, no. 2, pp. 599–604,
2000.

0 50 100 150 200 250 300
0

50

100

150

Iterations

(b
) 

  P
ow

er
 G

en
er

at
io

n 
(M

W
)

 

 

0 50 100 150 200 250 300
−10

0

10

20

30

Iterations

(a
) 

   
λ 

($
/M

W
hr

)

 

 

0 50 100 150 200 250 300

−150

−100

−50

0

50

100

150

Iterations

(c
) 

  L
in

e 
P

ow
er

s 
(M

W
)

 

 
P

41

P
82

P
63

P
14

P
54

P
45

P
36

P
56

P
76

P
67

P
87

P
28

P
78

P
98

P
89

λ
1

λ
2

λ
3

P
g1

P
g2

P
g3

P
65

Fig. 2. Simulation results of case 2: (a) Locational Marginal Price (LMP,
λ), (b) active power output of generators, (c) power flow on the lines.

[3] T. Erseghe, “A distributed and scalable processing method based upon
admm,” Signal Processing Letters, IEEE, vol. 19, no. 9, pp. 563–566,
2012.

[4] E. Dall’Anese, H. Zhu, and G. B. Giannakis, “Distributed optimal power
flow for smart microgrids,” Smart Grid, IEEE Transactions on, vol. 4,
no. 3, pp. 1464–1475, 2013.

[5] V. R. Disfani, L. Fan, L. Piyasinghe, and Z. Miao, “Multi-agent
control of community and utility using lagrangian relaxation based dual
decomposition,” Electric Power Systems Research, vol. 110, pp. 45–54,
2014.

[6] J. Lavaei and S. H. Low, “Zero duality gap in optimal power flow
problem,” Power Systems, IEEE Transactions on, vol. 27, no. 1, pp.
92–107, 2012.

[7] L. Xiao and S. Boyd, “Optimal scaling of a gradient method for
distributed resource allocation,” Journal of optimization theory and
applications, vol. 129, no. 3, pp. 469–488, 2006.

[8] W. Zhang, W. Liu, X. Wang, L. Liu, and F. Ferrese, “Online optimal
generation control based on constrained distributed gradient algorithm,”
Power Systems, IEEE Transactions on, to appear.

[9] A. J. Conejo and J. A. Aguado, “Multi-area coordinated decentralized
dc optimal power flow,” Power Systems, IEEE Transactions on, vol. 13,
no. 4, pp. 1272–1278, 1998.

[10] A. G. Bakirtzis and P. N. Biskas, “A decentralized solution to the dc-opf
of interconnected power systems,” Power Systems, IEEE Transactions
on, vol. 18, no. 3, pp. 1007–1013, 2003.

[11] P. N. Biskas, A. G. Bakirtzis, N. I. Macheras, and N. K. Pasialis, “A
decentralized implementation of dc optimal power flow on a network of
computers,” Power Systems, IEEE Transactions on, vol. 20, no. 1, pp.
25–33, 2005.

[12] S. Kar, G. Hug, J. Mohammadi, and J. Moura, “Distributed state estima-
tion and energy management in smart grids: A consensus+ innovations
approach,” Selected Topics in Signal Processing, IEEE Journal of, vol. 8,
no. 6, pp. 1022–1038, Dec 2014.

[13] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging,” Journal of Mathematical
Imaging and Vision, vol. 40, no. 1, pp. 120–145, 2011.

[14] C. Zhao, U. Topcu, and S. Low, “Swing dynamics as primal-dual
algorithm for optimal load control,” in Smart Grid Communications
(SmartGridComm), 2012 IEEE Third International Conference on.
IEEE, 2012, pp. 570–575.

[15] C. Zhao, U. Topcu, N. Li, and S. Low, “Design and stability of load-side
primary frequency control in power systems,” Automatic Control, IEEE
Transactions on, vol. 59, no. 5, pp. 1177–1189, May 2014.

[16] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “Mat-
power: Steady-state operations, planning, and analysis tools for power
systems research and education,” Power Systems, IEEE Transactions on,
vol. 26, no. 1, pp. 12–19, 2011.


