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Abstract—This paper presents an optimization problem of
siting capacitors in a power network to achieve economic benefits.
The formulated optimization problem is a nonlinear mixed
integer programming problem. In order to find an approxi-
mate optimal solution, Benders decomposition is adopted. The
optimization problem will be decomposed into a main problem
and a subproblem. The subproblem determines dispatch patterns
for generators to minimize an objective function if the sites
of the capacitors are given. The subproblem is a conventional
AC optimal power flow problem. Existing toolboxes such as
MATPOWER is used to solve such problems. The subproblem
helps to create Benders cuts for the main problem which
decides where to put capacitors with a set of cuts introduced
accumulatively from the subproblems at each iteration. The main
problem is solved by MATLAB CVX toolbox. Numerical results
for IEEE 118-bus system are given.

I. INTRODUCTION

Give a set of capacitors, where to site them to achieve
the best economic benefit is a nonlinear mixed integer pro-
gramming problem. Back in 1989, this problem was already
described in [1]. The strategy of problem solving is Benders
decomposition where the entire optimization problem is de-
composed into two problems. One problem focuses on the
conventional optimal dispatch problem while the other focuses
on mixed integer programming problem. In that paper, the au-
thors explained the modeling details. Benders decomposition
solving strategy only shows up in the appendix.

Benders decomposition has been adopted to solve similar
type of mixed integer nonlinear programming problems. For
example, in [2], [3], a unit commitment problem with AC
optimal power flow (OPF) is solved by Benders decompo-
sition. Once the unit on/off is decided, for each hour, an AC
OPF problem is solved. This subproblem introduces cuts to the
main problem. And the main problem looks at unit scheduling
with the constraints introduced by the Benders cuts. Benders
cuts replace a set of nonlinear constraints. The main problem
becomes a mixed integer linear programming problem.

More recently, Benders decomposition has been adopted
in stochastic programming [4] and robust programming [5]
to handle scenarios of large dimensions. For example, in
[4], a stochastic unit commitment problem considering wind
variation is to be solved. The wind variation is represented
by various scenarios with probability assigned. Given the unit
on/off schedules, for each scenario, an AC OPF problem
will be solved and Benders cuts will be constructed. In the
main problem, unit on/off decision will be made based on
the temporal constraints such as ramp up/down limits and the
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Benders cuts from the subproblems. Using this decomposition
technique, large-scale stochastic programming problem can
now be solved.

The objective of this paper is to adopt Benders decom-
position method to site fixed size capacitors. Unlike [1],
we focus on the mathematics of Benders decomposition in
capacitor siting problems. In addition, our research adopts the
toolboxes introduced after 1989 in the research community:
MATPOWER [6] for AC OPF, CVX [7] (a MATLAB toolbox
for convex optimization using solvers such as GUROBI)
and GUROBI [8] ( a solver for mixed integer programming
problem solving).

The rest of the paper is organized as follows. Section II
gives the capacitor siting mathematical programming problem
formulation. Section III gives the details on Benders decom-
position application in capacitor siting. Section IV presents the
numerical study results. Section V concludes the paper.

II. MATHEMATICAL PROGRAMMING FORMULATION

Capacitor siting while considering an AC OPF is formulated
as follows. The capacitors are assumed to have fixed size Qc.
A binary variable ui indicates if Bus i will have capacitor
installed or not.

min f(Pg)

s.t. Pg − PL − P (V, θ) = 0

Qg −QL −Q(V, θ) = 0

uiQc = Qi(V, θ)

S(V, θ)− SM ≤ 0

V m ≤ V ≤ VM

Pmg ≤ Pg ≤ PMg

Qmg ≤ Qg ≤ QMg∑
i

ui = Nc

(1)

where
f(.) is the cost function, superscript M denotes upper bound
and m denotes low bound.
Pg , Qg , PL and QL are the vectors of bus real and reactive
power injection, and real and reactive loads.
P (V, θ) and Q(V, θ) are the power injection expressions in
terms of bus voltage magnitude and phase angles.
S(V, θ) is the vector of line complex power flow.
ui is a binary variable. ui = 1 indicates a capacitor is installed
at Bus i. ui = 0 means no capacitor installed.

The two equality constraints are power flow equations. The
first inequality constraint denotes the line flow limit. The rest
three inequalities denote the voltage requirement and generator
exporting power limits.
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III. BENDERS DECOMPOSITION

Benders decomposition is applied to the above nonlinear
mixed integer programming problem. The binary variables u
will be separated from the rest of the continuous decision
variables such as Pg , Qg , V and θ. When the binary variable
vector u is fixed, or the sites of capacitor installation are
given, how to dispatch generators to achieve economic is a
conventional AC OPF problem. Based on the current vector
u, a cutting plane can be constructed. Benders cuts are dual
cuts.

Subproblem:

min f(Pg)

s.t. Pg − PL − P (V, θ) = 0

Qg −QL −Q(V, θ) = 0

ûiQc = Qi(V, θ)

S(V, θ)− SM ≤ 0

V m ≤ V ≤ VM

Pmg ≤ Pg ≤ PMg

Qmg ≤ Qg ≤ QMg

(2)

Let the constraints related to vector u be relaxed. Examine
the partial dual problem of the original problem, we have:

max
λ

minf(Pg) +
∑
i

λi(Qi(V, θ)− uiQc)

s.t.Pg − PL − P (V, θ) = 0

Qg −QL −Q(V, θ) = 0

S(V, θ)− SM ≤ 0

V m ≤ V ≤ VM

Pmg ≤ Pg ≤ PMg

Qmg ≤ Qg ≤ QMg

(3)

For a given vector û (feasible), solving Problem (1) leads
to solutions to all decision variables. Since the partial dual
problem is a maximizing problem where the optimal solution
should always be greater or equal to that corresponds to any
given û, therefore, the cutting plane can be constructed based
on the partial dual as:

η ≥ f(P̂g) +
∑
i

λ̂i(Q̂i − uiQc) (4)

Note that Q̂i = ûiQc, and f(P̂g) is the cost function
computed based on û. The above cut can rewritten as:

η ≥ ˆcost +
∑
i

λ̂iQc(ûi − ui). (5)

The cut can also be viewed as subgradient based update for
the decision variables ui. For the maximization problem, the
optimal ui should make the final cost greater or equal than
ˆcost +

∑
i λ̂iQc(ûi − ui).

This cut will be used for the master problem of capacitor
switching. Suppose there are K-step iterations, then there will

be K cuts.

min
η,u

η

s.t. η ≥ ˆcost(k) +
∑
i

λ̂i
(k)
Qc(û

(k)
i − ui)

k = 1, · · · ,K∑
i

ui = Nc

(6)

The above problem is a mixed integer linear programming
problem and can be solved by existing toolboxes such as CVX
[7].

Values from the master problems are the lower bounds of the
original problem since partial dual problems are introduced.
Values from the sub problems are the upper bounds of the orig-
inal problem since u is a vector inside the feasible region and
the problem gives a feasible solution. When the gap between
the lower bound and upper bound is less than a threshold, the
iteration process can be terminated and a solution is found.

IV. CASE STUDIES

IEEE 118-bus system (Fig. 1) is selected for case study.
Total there are 64 load buses. These buses are candidates for
installing capacitors. The size of each capacitor is assumed

Fig. 1. IEEE 118-bus system [9].

to be 5 MVar. MATLAB codes were developed for this
problem. The main problem is solved by CVX toolbox with
GUROBI solver while the subproblem (AC OPF) is solved
MATPOWER. Reactive MATPOWER gives reactive power
prices at all nodes. These prices will be used to generate
cuts for the main problem. The following total numbers to
be installed are checked: 5, 10, 15, 20 and 30. For each case,
the values of the main problem and the subproblem at each
iteration are plotted.

Since the AC OPF is a nonconvex optimization problem,
the results obtained need examination for their optimality.

Fig. 2 gives the results when five capacitors are planned. It is
shown that the values of the main problem and the subproblem
converge. At iteration 2, it is found that the value of the main
problem is lower than the values at iteration 9. Solution to the
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Fig. 2. Total number of capacitors: 5.

AC OPF is a feasible solution. Therefore, the siting should be
based on the decision variables from iteration 2.
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Fig. 3. Total number of capacitors: 10.

Fig. 3 gives the results when 10 capacitors are planned. It is
shown that the values of the main problem and the subproblem
converge after iteration 18. At iteration 10, it is found that
the value of the main problem is lower than the values at
iteration 18. Solution to the AC OPF is a feasible solution.
Therefore, the siting should be based on the decision variables
from iteration 10.

Fig. 4 gives the results when 15 capacitors are planned. It is
shown that the values of the main problem and the subproblem
converge after iteration 12. At iteration 3, it is found that
the value of the main problem is lower than the values at
iteration 12. Solution to the AC OPF is a feasible solution.
Therefore, the siting should be based on the decision variables
from iteration 3.

Fig. 5 gives the results when 20 capacitors are planned. It is
shown that the values of the main problem and the subproblem
converge after iteration 6. At iteration 4, it is found that the

0 5 10 15 20
1.311

1.311

1.3111

1.3111

1.3112

1.3112
x 10

5

iteration

Value of the AC OPF

Value of the main problem

Fig. 4. Total number of capacitors: 15.
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Fig. 5. Total number of capacitors: 20.

value of the main problem is lower than the values at iteration
6. Solution to the AC OPF is a feasible solution. Therefore, the
siting should be based on the decision variables from iteration
4.

Fig. 6 gives the results when 30 capacitors are planned. It is
shown that the values of the main problem and the subproblem
converge after iteration 4. And this value is the minimum
among all values from the AC OPF and the maximum of all
values from the main problem. Therefore, the siting should
be based on the decision variables of the converged results at
iteration 4-9.

Fig. 7 presents the bus locations for the capacitors for the
five scenarios.

Remarks: The case study is carried out in IEEE-118 system.
It is well-known that AC OPF is a nonconvext optimization
problem. For non-convex problems, Benders decomposition
may not work well. The case studies show that for four
scenarios out of five, the converged solutions from Benders
decomposition are not the optimal solution.

For each cast study, discretion has to be applied when
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Fig. 6. Total number of capacitors: 30.
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Fig. 7. Capacitor installation sites.

interpreting the results. In this type of mixed integer noncon-
vex programming applications, Benders decomposition is very
useful to provide approximately optimal solutions.

V. CONCLUSION

In this paper, a capacitor siting problem is solved using
Benders decomposition. The binary variables determining ca-
pacitor siting are separated from the differentiable variables
for AC OPF. Given the set of the binary decision variables,
AC OPF will be solved and Benders cuts are constructed. The
main problem determines the binary decision variables based
on the Benders cuts. An IEEE-118 bus system is used to test
the algorithm of siting. The study results demonstrate how to
interpret results from Benders decomposition for nonconvex
optimization problems.
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