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Abstract—The paper proposes to use PMU measurements
(voltage phasor, real and reactive powers) for system identifi-
cation. A second-order synchronous generator model with real
and reactive power as input and voltage phasor as output will
be developed in this paper based on the two-axis synchronous
generator dynamic model. Parameters of the model will be
identified based on the PMU measurements using least square
estimation technique. Two case studies are presented: a syn-
chronous generator estimation and a power subsystem estimation.
In both cases, the system will be represented by the proposed
model with parameters identified from PMU measurements.
Time-domain simulation results will validate the accuracy of the
proposed model and its identification. The contribution of this
paper is twofold: i) A model suitable for PMU measurement
based identification is developed; ii) better accuracy of system
parameter estimation can be achieved using the proposed model
compared to the classical model.

Index Terms—Least square estimation, parameter estimation,
synchronous machine, system identification.

I. INTRODUCTION

Phasor Measurements Units (PMU) provide time stamped
phasor data such as voltage magnitude (V ) and angle (θ),
active power (Pe) and reactive power (Qe), at a reporting rate
of 20-60 Hz. Due to such characteristics, PMU is regarded as
in important tool in Wide Area Measurement System (WAMS)
[1]. The objective of this research is to use PMU data for
system identification, i.e., given time series data of input and
output of a system and its dynamic model structure, the entire
set of the parameters of the model will be identified using
least square estimation.

Due to the low sampling rate of PMU data, PMU mea-
surements do not reflect electromagnetic dynamics adequately.
However, the sampling rate is high enough to reflect the low-
frequency electromechanical dynamics in power grids. Com-
pared to some of the approaches in the literature, where all
kinds of measurements can be obtained, PMU measurements
are limited to voltage phasors and powers. Therefore, the
dynamic model suitable for PMU data application will focus
on electromechanical dynamics. Meanwhile, the parameters
identified will be a subset of generator parameters.

Two estimation approaches are dominant: Kalman Filter
(KF) based estimation and least squares based estimation. KF
approach is a Bayesian recursive method aiming at reducing
a covariance matrix whereas the least squares approach uses
a non Bayesian methods considering the complete data set
in the time window. KF approaches have been proposed to
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estimate synchronous machine electromechanical parameters
using PMU measurements. In [2], extended Kalman filter
(EKF) based method is proposed to calibrate the parameters
of a classical generator. In [3], EKF is applied to calibrate
the multi-machine power system parameters. Our research in
[4] has also examined EKF application for PMU data based
estimation and the Unscented Kalman Filter in [5].

Least squares based system identification has been seen
plenty in the literature in variety of applications. The objective
of system identification is to compare the output of a system
with the projected output of the model given the same input.
The parameters of the model will be optimized to reach a
minimum error squares over the experimental period. System
identification has been used in power electronic research in
identifying a power converter model [6], [7], to model large
signal power electronics systems [8], and to estimate DC link
model parameters in VSC-HVDC system [9]. It has also been
used in generator parameter identification [10], Prony analysis
[11], [12], ARX-based generator model identification [13],
[14] and in finding the state space system for multi-input multi-
output models of power systems [15].

In PMU data based estimation, least square estimation based
system identification approach has not been examined. This
approach will be investigated in this paper.

A key challenge in least square estimation based system
identification is the difficulty to estimate some parameters
since they are insensitive to the output data. This makes the
estimation of some parameters not reliable. Burth et al. [16]
points out to the difficulty in estimating synchronous machine
parameters based on measurements such as terminal voltage
and current. This is especially a problem in PMU measure-
ments since these measurements are the only measurements
can be obtained and used.

Burth et al. [16] suggests to apply parameters sub-set
selection to find a best set of parameters that can be estimated
with reasonable amount of precision. In [16], a Hessian matrix
of the objective function is applied to find the parameters sub-
set. Another approach for sub-set selection is the study of
sensitivity matrix as shown by Cintron-Arias et al. [17]. The
two approaches are correlated and both are based on Jacobian
calculation. In this research, sensitivity matrix will be used to
demonstrate the choice of model order.

The rest of this paper is organized as follows: Section II will
derive a linear model suitable for PMU data based system iden-
tification. Section III presents case studies applying Matlab
System Identification Toolbox. A single machine identification
and a an area identification are presented. Section IV presents
the conclusion of this paper.



II. PROPOSED MODEL SUITABLE FOR PMU DATA BASED
IDENTIFICATION

To facilitate system identification, PMU measurements will
be separated into two sets: the input and the output. The
active and reactive powers will be treated as the input and
the voltage magnitude and phase will be considered as the
output. The purpose of this section is to build a linearized

ΔPe ΔV

Δθ DuCxy

BuAxx





ΔQe

Fig. 1. Proposed state space model

state-space model as shown in Fig. 1. In order to identify
which set of parameters can be better represented in the
PMU measurements, sensitivity analysis will be conducted.
Furthermore, a reduced-order model will be developed.

A. Subset selection

Synchronous machine two-axis model with no governor nor
exciter controls and ignoring the sub-transient dynamics [18]
can be described by:

∂δ′

∂t
= ω − ω0 (1)

2H

ω0

∂ω

∂t
= Pm − Pe (2)

T ′do
∂E′q
∂t

= −E′q − (xd − x′d)Id + Efd (3)

T ′qo
∂E′d
∂t

= −E′d − (xq − x′q)Id (4)

The internal voltage, current and terminal voltage relationship
is expressed as follows.

[E′d+(x′d−x′q)Iq+E′q] = jx′d(Id+jIq)+V ej(θ−δ
′+π/2) (5)

Phasor diagram in 2 also explains the above relationship.
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Fig. 2. Phasor diagram for a classical model from [19].

[17] proposes to use sensitivity matrix to select a subset
of parameters to be estimated. Sensitivity matrix can be used
study the impact of the various parameters on the output of a
system, in other words, it tries to find the most influential and
the least influential parameter on the output.

In this research, for a two-axis generator model, the machine
parameter set is defined as M=

{
H,x′d, xq, xd, T

′
do, T

′
qo

}
where H is the inertia, x′d d-axis transient reactance, xd and xq
are the dq-axis reactances, T ′do and T ′qo are the dq-axis open-
circuit time constants. The sensitivity matrix of the system
(20)-(21) is the Jacobian matrix χ of the output Y wrt. the
parameter set M.

χij =
∂Yi
∂Mj

(6)

where i denotes i-th output and j denotes j-th parameter. Yi
is the ith measurement and has N samples.

Accordingly, χ for the system will be N × 6 where N is
the total number of samples.

The importance of the sensitivity matrix in least squares
based estimations (like system identification) comes from the
objective of the least squares estimation of minimizing the
output error by manipulating M around a value M0 [17] to
find its estimate M̂ :

M̂ = arg min
M

N∑
i=1

(Y (i)− Ŷ (i|M))2 (7)

The estimated parameter set has an expression as follows:

M̂ = M0 + (χTχ)−1χT ζ (8)

where ζ is the 1 × N error (noise) matrix associated with
the output equation. A good estimation of M will reduce the
impact of ζ by having (χTχ) far from singularity. Should
(χTχ) be close to singular, then (χTχ)−1 will amplify the
impact of ζ and distorts the estimation of M.

Singular value decomposition (SVD) of χ provides an
insightful relation between each parameter singular value and
the possibility of the least squares estimation to find a good
value of the parameter. The singular value decomposition of
of χ is χ = ΥSΩT . where Υ is an N ×N orthogonal matrix,
Ω is a 6 × 6 orthogonal matrix, and S is the singular value
matrix and is χ is N ×6 matrix. The first 6 diagonal elements
of S are the singular values of χ and the rest of the matrix
equals to 0.

The estimation of M around M0 can now be written as [17]:

M̂ = M0 +

6∑
i=1

oiu
T
i

si
ζ (9)

where oi, ui are the ith columns of Ω and Υ. si is the ith
diagonal value of S.

Equation (9) shows the inverse proportional impact of the
singular value si associated with a parameter Mi. As si de-
creases the error ζ introduces more distortion on the estimated
parameter and leads to a larger deviation from the correct
value. Accordingly, it is better to estimate the parameters with
high singular values. In order to find the singular values, the
matrix χ needs to be calculated.



χ can be calculated analytically [20] in case the the associ-
ated differential equations are simple. In other cases, χ can be
calculated numerically. The sensitivity matrix χ was calculated
numerically in [21] using finite differences by perturbing each
parameter Mi aside by a value h and then recording the output
of the system. The recorded output before (Y ) and after (Yh)
perturbation are used for the Jacobian calculation:χ = Yh−Y

h .
Following the calculation of the χ, SVD is performed in order
to extract S.

S =


3.9 0 0 0 0 0
0 0.2 0 0 0 0
0 0 0.12 0 0 0
0 0 0 0.08 0 0
0 0 0 0 0.04 0
0 0 0 0 0 0.03

 (10)

It was found that x′d is associated with 3.9, H with 0.2, xq with
0.12, xd with 0.08, T ′qo with 0.04, T ′Ddo with 0.03. Therefore,
it is obvious that x′d and H can be estimated reliably, while
the two time constants cannot be estimated as reliably as x′d
and H . In the following subsection, a second-order generator
model will be derived from the two-axis model. By reducing
the order of the model, the two time constants no longer need
to be estimated.

B. Modified Classical Generator Model

For the two-axis synchronous generator model, the powers
can be expressed by terminal voltage and current or terminal
voltage and internal voltages. Equations (11) and (12) present
the powers:{

Pe = IdV sin(δ′ − θ) + IqV cos(δ′ − θ)
Qe = IdV cos(δ′ − θ)− IqV sin(δ′ − θ)

(11)

Pe =
E′

qV sin(δ′−θ)−E′
dV cos(δ′−θ)

x′
d

Qe =
E′

qV cos(δ′−θ)+E′
dV sin(δ′−θ)−V 2

x′
d

(12)

Note that (12) has an assumption of neglecting the transient
saliency. Therefore x′d = x′q .

The synchronous machine classical model is obtained by
reducing the two-axis model when setting T ′qo is set to zero
(i.e. ignoring the quick q axis dampers dynamics) and T ′do is
extended to ∞ therefore E′q is a constant. Consequently, such
simplification keeps the electromechanical dynamics in (1) and
(2) and completely decouples from E′d and E′q dynamics. In
classical model, the electric circuit, the generator is a voltage
source E′ behind a transient reactance x′d. The angle between
E′ and V is δ. The difference between the voltage source
angle δ and the rotor angle δ′ is ignored in classical generator
model.

In this paper, this difference will not be ignored. According
to [19] and [18] the difference γ between the rotor angle δ′ and
the voltage source angle δ is almost constant and is negligible
when studying angle dynamics. Fig. 2 [19] shows γ, δ′, and
δ. Accordingly:

δ′ = δ + γ ⇒ ∆̇δ′ = ∆̇δ + ∆̇γ (13)

Careful attention at γ (Fig. 2) shows the following:

γ = tan−1
(
E′d
E′q

)
⇒

∆̇γ = − E′d0
E′d0

2 + E′q0
2

˙∆E′q +
E′q0

E′d0
2 + E′q0

2
˙∆E′d (14)

When E′d and E′q dynamics are ignored ∆̇γ = 0. In this
paper, the effect of dynamics will be considered. Based on
(13) and (14):

∆̇δ = ∆̇δ′ − ∆̇γ

⇒ ∆̇δ = ∆ω +
E′d0

E′d0
2 + E′q0

2
˙∆E′q −

E′q0

E′d0
2 + E′q0

2
˙∆E′d

(15)

We need to find ˙(∆E′q) and ˙(∆E′q). Based on the two-axis
generator model, we have:

˙(∆E′q) =
1

T ′do
[−∆E′q − (xd − x′d)∆Id + ∆Efd] (16)

˙(∆E′d) =
1

T ′qo
[−∆E′d − (xd − x′d)∆Iq (17)

Since ∆Pe and ∆Qe are treated as the input to the model,
the derivatives ˙(∆E′q),

˙(∆E′d) should be expressed in terms of
states (∆E′q , ∆E′d) and powers (∆Pe and ∆Qe) not in terms
of ∆Id and ∆Iq . ∆Id and ∆Iq can be expressed in terms of
∆E′d, ∆E′q , ∆Pe, and ∆Qe using (11) and (12) (by removing
V sin(δ′−θ) and V cos(δ′−θ)). Accordingly, the small signal
system1 (16) and (17) will become:[

˙∆E′q
˙∆E′d

]
=

[
JĖ′

qE
′
q

JĖ′
qE

′
d

JĖ′
d
E′

q
JĖ′

d
E′

d

] [
∆E′q
∆E′d

]
+[

JĖ′
qPe

JĖ′
qQe

JĖ′
d
Pe

JĖ′
d
Qe

] [
∆Pe
∆Qe

]
+

[
1/T ′

do

0

]
∆Efd (18)

Based on the power expression in (12), the terminal voltage
phase angle and magnitude can also be expressed in terms of
states, and power:[

∆θ
∆V

]
=

[
1
0

]
∆δ′ +

[
JθPe

JθQe

JV P JV Qe

] [
∆Pe
∆Qe

]
+[

JθE′
q

JθE′
d

JV E′
q

JV E′
d

] [
∆E′q
∆E′d

]
(19)

(JθPe , JθQe , JV Pe , JV Qe , JθE′
q
, JθE′

d
, JV E′

q
, and JV E′

d
)2

represent the value of the Jacobian of ∆θ and ∆V around
the equilibrium point.

The state space system for the linearized two-axis model
can be formulated by using (18) in (15), linearizing (2) and
adding (18), and (19) in order to have:


∆̇δ

∆̇ω
˙∆E′q
˙∆E′d

 =


0 1 Jδ̇E′

q
Jδ̇E′

d

0 0 0 0
0 0 JĖ′

qE
′
q

JĖ′
qE

′
d

0 0 JĖ′
d
E′

q
JĖ′

d
E′

d




∆δ
∆ω
∆E′q
∆E′d

+

1The appendix shows the detailed term
2detailed expressions are shown in the appendix




Jδ̇Pe

Jδ̇Qe

− ω0/2H 0
JĖ′

qPe
JĖ′

qQe

JĖ′
d
Pe

JĖ′
d
Qe


[

∆Pe
∆Qe

]
+


Jδ̇Efd

0
1/T ′

do

0

∆Efd

(20)

[
∆θ
∆V

]
=

[
1 0 JθE′

q
JθE′

d

0 0 JV E′
q

JV E′
d

]
∆δ
∆ω
∆E′q
∆E′d

+

[
JθPe

JθQe

JV P JV Qe

] [
∆Pe
∆Qe

]
(21)

Jδ̇Pe

2, Jδ̇Qe

2, and Jδ̇Efd

2 represent the influence of the input
and the electric states E′q and E′d on the electromechanical
state δ.

The state space system (20)-(21) can be downsized into a
system with two states only δ and ω with an additional error
Err1 and Err2, since the equations of these two states include
all the parameters in M.

[
∆̇δ

∆̇ω

]
=

[
0 1
0 0

] [
∆δ
∆ω

]
+

[
Jδ̇Pe

Jδ̇Qe

− ω0/2H 0

] [
∆Pe
∆Qe

]
+ Err1

(22)[
∆θ
∆V

]
=

[
1 0
0 0

] [
∆δ
∆ω

]
+

[
JθPe

JθQe

JV P JV Qe

] [
∆Pe
∆Qe

]
+ Err2

(23)

In the above state space model, Jδ̇Pe
and Jδ̇Qe

are de-
termined by steady-state values of E′d, E′q , terminal voltage,
rotor angle and time constants. These two terms, J ˙deltaPe

and
J ˙deltaQe

, will be treated as independent parameters and will
be estimated. JθPe , JθQe , JV P and JV Qe are all related to
the transient reactance x′d. Hence these four terms are not
independent parameters and will be expressed in terms of x′d.

In the case of a classical generator model, the dynamics of
E′q and E′d are completely ignored, then Jδ̇Pe

and Jδ̇Qe
are

zeros.
As a summary, the system identification will identify these

parameters for the proposed model: H , x′d, Jδ̇Pe
and Jδ̇Qe

,
while identifying H , x′d for the classical model.

The above system can be written as:

Ẋ = [A]X + [B]U + Err1

Y = [C]X + [D]U + Err2 (24)

with the state vector X = [∆δ ∆ω]T , the observation (or
measurement) vector Y = [∆θ ∆V ]T , the input vector U =
[∆Pe ∆Qe]

T , and the error vectors Err1 and Err2.
Note that the system matrix [A] is not stable. In differential

equation integration, this can cause numerical error propaga-
tion. Therefore, this matrix is modified with small numerical
number ε (ε < 0).

A =

[
0 1
ε ε

]
(25)

III. SIMULATION AND VALIDATION

Matlab system identification toolbox is used for the case
studies.

A four-machine two-area system is used for case study. Four
sets of measurements for Pe, Qe, V, and θ are taken following
a three phase line to ground fault at a point right outside the
machine or the power subsystem.

Small signal quantities ∆Pe,∆Qe,∆V and ∆θ are derived
by removing the steady state value of the measurements.
∆Pe and ∆Qe are considered as the input and ∆V and
∆θ are considered as output. Both systems representing the
proposed model and the classical model are implemented
with MATLAB System Identification Toolbox grey box. For
simplification and generalization purposes, Err1 and Err2 are
treated as zeros.The simulation data is shown in the appendix.

Once the models are identified, the models of Fig. 3 are
implemented in MATLAB Simulink and fed with the input
∆Pe,∆Qe in addition to the estimated parameters. The output
of the Simulink system and the states (∆δ and ∆ω) are
compared to the simulated output and mechanical states ∆δ′

and ∆ω.

Classic
model

Proposed
model

Input

Output

Δ,ΔV

Δ,ΔV

ΔPe, ΔQe

Fig. 3. Validation process of proposed model

The purpose of this case is to represent Area 1 machines
(Fig. 4) by one single machine and run the estimation algo-
rithm to find the equivalent machine parameters. Validation
of the estimated machine will show if the equivalent machine
truly represents Area 1. A similar approach can be used to
represent Area 2 then the whole system can be scaled down
to two equivalent machines connected by a radial transmission
line.
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Fig. 4. Case 2: Four-machine two-Area System

The simulation was carried out in Power System Toolbox
(PST) [22]. The simulated machines are similar and were built
around sub-transient model and equipped with dc exciters and



Parameter H x′d cost function
Simulated equivalent machine 13 0.27 0
Proposed model 12.3 0.31 2.5e−11

Classic model 16 0.31 4.4e−10
TABLE I

CASE 2: ESTIMATED PARAMETERS OF THE PROPOSED MODEL AND
CLASSIC MODEL

governors. The simulation details are shown in the appendix.
Input and Output data were extracted in bus 20 were a PMU
is supposed to be installed.

The resulting input and output data are shown in Fig. 5.
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The stabilizing term ε formulated in (25) is set to -0.9 which
is higher than -0.5 used in case 1 (subsection ??). The value
-0.9 for ε is still small compared to the other factor (− ω0/2H)
affecting ∆ω̇ which is around -15.

The estimated parameters along with the cost function3

provided by the system identification algorithm are shown
in Table I. The simulated equivalent machine of the power
subsystem has theoretically a total inertia equals the sum of the
inertias of its individual machines (when perfectly coherent)
and a transient reactance equals the Thevenin equivalent of the
reactances seen from bus 20 (i.e. H = 13 and x′d = 0.27).

The validated output of the proposed model and the classic
model are shown in 6. The impact of various values for ε on
angle validation is shown in Fig. 7, which clearly shows the
the proposed model is better in every case. The impact on ∆V
was insignificant.

IV. CONCLUSION

This paper investigates using least square estimation based
system identification to apply PMU data for generator model
identification. A second-order model is proposed in this paper
based the two-axis generator model. This model has inputs
from real power and reactive power and outputs as the terminal
voltage phasor. Unlike the classic generator model where the

3It is assumed that the simulated machine, being the base model, has a cost
of 0

0 5 10 15 20 25
−0.1

−0.05

0

0.05

0.1

0.15

∆ 
θ

 

 

Simulated
Proposed model
Classic model

0 5 10 15 20 25
−0.02

−0.01

0

0.01

0.02

∆ 
V

Time (s)

 

 

Simulated
Proposed model
Classic model

Fig. 6. Case 2: Validated output of the proposed model and classic model
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Fig. 7. Case 2: The impact of varying ε on the angle output of the proposed
and classic models

dynamics of electric variables such as the internal voltages
are completely ignored, this model includes the impact of
these dynamics. System identification based on this model is
demonstrated in two case studies: a single generator model
identification and a subsystem identification. In both case
studies, the proposed model is tested against the classical
model and shows more accurate prediction of parameters and
system responses.

APPENDIX

The detailed derivation of the Jacobian matrix is
shown in the longer version of the paper posted at
http://power.eng.usf.edu.
Case 1: Simulation data for the machine: H =
3.7 s, x′d = 0.4 pu, x′q = 0.4 pu, xd = 1.81 pu, xq =
1.81 pu, rs = 0, x′′d = 0.15 pu, x′′q = 0.15 pu, T ′d0 =
8 s, T ′q0 = 1 s, T ′′d0 = 0.03, T ′′q0 = 0.07 s. Exciter:
Tr = 0 s, Ka = 200, Ta = 0.03 s, Ke = 1, Te =



0.1 s, Tb = 5 s, Tc = 0.3 s, Kf = 2.5e−3, Tf =
0.21 s, Efmin = −11.5, Efmax = 11.5, Kp = 0

Case 2:
Simulation data for the machines: H = 6.5 s, x′d =

0.3 pu, x′q = 0.3 pu, xd = 1.81 = pu, xq =
1.7 pu, rs = 0.0025, x′′d = 0.25 pu, x′′q = 0.25 pu, T ′d0 =
8 s, T ′q0 = 0.4 s, T ′′d0 = 0.03, T ′′q0 = 0.05 s. DC Exciter:
Tr = 0.01 s, Ka = 46, Ta = 0.06 s, Ke = 0, Te =
0.46 s, Tb = 0 s, Tc = 0 s, Kf = 0.1, Tf = 1 s, V rmin =
−0.9, V rmax = 1
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