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Abstract

Both fixed-speed squirrel-cage induction generators and variable-speed doubly-fed
induction generators are used in wind turbine generation technology. Modeling
and simulation of induction machines using vector computing technique in Mat-
lab/Simulink provides an efficient approach for further research on wind genera-
tion system integration and control. In this paper, the vector computing technique
is applied in modeling and simulation of induction machines. Free acceleration of
squirrel-cage induction generator, active power and reactive power control of DFIGs
in a power system as well as inter-area oscillation damping control are demonstrated
using the proposed model. The modeling approach in Matlab/Simulink makes con-
troller design and simulation verification effective.

Key words: Vector Computing, Induction Generator, DFIG, Oscillation Control,
Time Domain Simulation

1 Introduction

Induction machines are important components that serve as power sources and
common loads in power systems: pumps, steel mills, servomotors, to name a
few. With the increasing use of renewable energy in recent decades, induction
generators are found to have important applications in wind turbine genera-
tion. Wind turbine driven squirrel-cage induction generators are usually found
to interconnect with the grid together with Static Var Compensation (SVC) to
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support reactive power locally [1], [2]. More recently, the doubly-fed induction
generator (DFIG) is increasingly used in wind generation. In the case of DFIG,
rotor voltages or currents of the induction generators are being controlled.
With changing wind speed, one can adjust the frequency of the injected rotor
voltage of the DFIG to obtain a constant frequency at the stator [3]. The
DFIG is an important type of variable-speed constant-frequency generator.
Research on DFIG has shown that it has the ability to control the active
power and the reactive power [4] and to provide frequency support [5]. More
control applications of DFIG are yet to be investigated. Efficient modeling
and simulation techniques for induction generators will facilitate the research
on wind turbine generation.

Matlab/Simulink is a powerful tool for time domain simulations. It has been
adopted in a graduate level course on modeling and simulation of machines in
Purdue University [6]. Yet, in most cases, the featured vector computing tech-
nique of Matlab has not been fully explored by electric machine researchers.
Using matrix/vector concepts not only simplifies problems but also contributes
to time saving in debugging. It makes simulation an art. This concept will be
used in dynamic model building and simulation of induction generators in this
paper. With modeling task in Simulink accomplished, linearized model can be
derived by Matlab with a simple function “linmod”. Linear system analysis
and control techniques can be used to develop various control schemes.

Dynamic machinery models are usually expressed by a set of differential equa-
tions. In Matlab/Simulink, each differential equation can be represented by an
integral unit. With a set of differential equations, a set of integral units will be
used. While an input of one integral unit might be a function of the outputs of
other integral units, the Simulink model can be very complex and disorganized
with lines interweaving. What is more, a less careful design of the model could
introduce algebraic loop which will hinder the progress of simulation. Using
matrix concepts, a set of differential equations will be expressed as:

Ẋ = AX + BU

where X and U are vectors, A and B are matrices. Hence one integral unit is
enough to express this model.

The paper will discuss the modeling technique for induction machines. A full
order induction generator model building via Matlab/Simulink is investigated
in this paper. The model of an induction generator can have various orders,
such as 1, 3 or 5. The fifth-order model is considered to be a full order model
for an induction generator. The third-order model ignores the stator dynamics
and is widely used in power system transient stability analysis [7]. The first-
order model ignores both the stator dynamics and the rotor dynamics. The
only differential equation left is the swing equation. This model is suitable
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for long term power system dynamic study including the induction motor
load characteristics [8]. A full order induction generator model includes high
bandwidth dynamics and is suitable for current controller design and analysis
of its impact on inertial response [9].

Simulations using the full-order dynamic induction generator model will pro-
vide researchers insights into the dynamic behavior of the machine, the inter-
action of the machine and the power electronics control loops. Therefore it is
important to develop modeling and simulation based on the full order models
of induction generators.

This paper will investigate the vector/matrix form of full order induction gen-
erator model and include it into Matlab/Simulink block in Section 2. This
block will be tested in various applications, such as free acceleration charac-
teristics of an induction motor, DFIG interconnection with a power system
(Section 3), an example power system (Section 4), DFIG current control, ac-
tive/reactive power control and damping control (Section 5). Simulations are
given in Section 6. Section 7 concludes the paper.

2 Induction Machine Model

The voltage equations of an induction machine in an arbitrary reference frame
can be written in terms of the currents as shown in Eqn. 1 [10].
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(1)

where ω is the rotating speed of the arbitrary reference frame. If we select
ω = ωb, that is, the rotating speed of the reference frame work is same as
2π60 rad/s, this reference frame is called a synchronously rotating reference
frame or synchronous reference frame.

The air gap flux linkages can be expressed as:

λqm = LM(iqs + i′qr) (2)
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λdm = LM (ids + i′dr) (3)

and the torque equation can be expressed as:

Te = λqmidr − λdmiqr. (4)

Assume that the reference frame is the synchronous reference frame and that
all quantities are in per unit value. Equation (1) can be further written in the
form: Ẋ = AX + BU , where X = [iqs, ids, ios, i

′

qr, i
′

dr, i
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0r]
T , and
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A = −B
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. (6)

The swing equation is

Te = 2Hω̇r + Tm. (7)

In summary, the differential equations (Eqn. 1 and Eqn. 7) represent the in-
duction machine with its 5-th order model.

2.1 Induction Machine Simulink Model

The simulink model in terms of the state space equations (Eqn. 1) is shown
in Fig. 1. In this model block, the inputs are voltage and rotor speed and the
output is a current vector. This model is quite simple and easy to understand.
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Fig. 2. Swing Equation in Simulink

Fig. 3. Induction Generator Modeling in Simulink

It saves not only on model building time but also debugging time. The rotor
speed is calculated through Eqn. 7 which is shown in Fig. 2.

The rotor speed will be fed back to the input of the block in Fig. 1. The
induction machine serves as a current source to the network and the output
from the network is the voltage vector. Thus, the induction machine and the
power system network are interconnected and as long as the initial condition
is set, dynamic simulation can be performed.

The entire induction generator model block consists both the swing equation
and the current state space model. The detailed model in Simulink is shown
in Fig. 3.
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Fig. 4. Free acceleration characteristics of a 10 hp induction motor in the syn-
chronously rotating reference frame

The developed Matlab/Simink model is bench marked by comparing the free
acceleration of an induction machine from Krause’ book [10]. To simulate the
free acceleration, the stator voltages vqs is set to 1 pu and all other voltages
vds, vqr and vdr are set to zero. The rotor is short circuited. The simulation
results shown in Fig. 4 are same as those from the textbook.

2.2 DFIG Modeling and Vector Control Concept

In the case of a DFIG, the rotor is not short circuited. A three-phase voltage
is injected into the rotor through the converter system. The frequency and
magnitude of the output voltage are controlled so that the stator outputs
rated voltage at 60 Hz. The DFIG configuration is shown in Fig. 5.

From the voltage equations (Eqn. 1), if we ignore the leakage resistance of the
stator, it could be shown that under steady state, vds is in phase with flux
linkage λqm while vqs is in phase with λdm. If vds = 0, then λqm = 0. Therefore,
the alignment of the q-axis with the stator terminal voltage Vs is the same as
the alignment of the air gap flux with the d-axis of the reference frame.

The torque equation (4) is now reduced to Te = λdmiqr and the reactive power

Qs can be expressed in terms of the rotor current as Qs = Lsλ2
m

L2
m

− λmidr [4].

From the expressions for the torque and the reactive power, it is found that

6



DFIG
To Grid

C2C1

C

Crowbar

vr ir

is

PWM Converters

vs

Pg+jQg

Wind Turbine

Fig. 5. DFIG configuration

the rotor currents can independently control the real and the reactive power.
The rotor currents can in turn be controlled by the injected rotor voltages.
The current iqr will be controlled by vqr and idr will be controlled by vdr. In
summary, we can control the active power by controlling vqr and the reactive
power by controlling vdr.

3 Interconnection of DFIG Model in Power Systems

Modeling wind farms interconnected to the grid is important for the transient
analysis of the entire system. In modeling a power system, the network is
usually treated as a Y matrix with the current and voltage relationship as
I = Y V . All generators are treated as current sources. From the current
sources, the system voltages can be computed as in Fig. 6. The voltages will
then be used in the differential equations expressed in terms of state variables
I and input variables V . In the case of a DFIG, the current to the network
is the sum of the stator current and the current from the converter and the
network voltage is the stator voltage. In a power system, the voltage phasors
are all based on a reference bus while the rotor angles are all based on a
reference machine. The stator voltage phasor of a DFIG can be expressed as

Vs =
vqs − jvds√

2
= |Vs|∠φ. (8)

In this case, the q-axis coincides with the reference voltage direction while the
d-axis is lagging the q-axis by 90◦.

To facilitate the vector control design for the DFIG, the q-axis has to be
aligned with the stator voltage Vs. Therefore, the reference frame of the system
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and the reference frame of the DFIG have an angle φ between them as in Fig.
7.
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Fig. 7. Machine reference frame and the system reference frame.

If the current to the network is in the machine reference frame, it has to
be transformed back to the system reference frame while interconnecting the
DFIG to the power system.

The net current injected into the grid consists of the stator current and the
current from the converter. If the converter loss is ignored, then the slip power
injected to the rotor circuit equals the power flowing from the network to the
converter. The PWM converters at grid side have the ability to make the
voltage and the current to be in phase. Therefore, the current through the
grid side can be computed as Ia = Pr

Vs
and the current injected into the grid

Ig = Is + Ia, where the rotor injected power is Pr = (vqriqr + vdridr)/
√

2. The
voltage, current flow diagram is shown in Fig. 8.
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4 An Example Power System

An example power system with a wind farm is presented in this section. The
entire model of the system will be built in Matlab/Simulink. The DFIG block
and network interface are described in Sections 2 and 3. From this exam-
ple system, we will show how to use the developed DFIG model to design a
damping control scheme.
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Fig. 9. Line diagram of two-area system with wind generator.

The test system shown in Fig. 9 is based on the classic two-area four-machine
system developed in [11] for inter-area oscillation analysis. Area 1 has two syn-
chronous generators, each with 835 MW rated power and Area 2 also has two
synchronous generators, each with 835 MW rated power. All four synchronous
generators are identical. In Area 1, a wind farm is connected to the grid. Gen
1 exports 700 MW and Gen 2 exports 560 MW. The exporting power level of
the wind farm is 240 MW - about 20% of 1260 MW.

In this paper, the full-order model of the synchronous generators is used. The
parameters of the steam turbine generators are taken from Krause’s classic
textbook Analysis of Electric Machinery [10]. The parameters are also shown
in Appendix.

There exists an inter-area oscillation characterized by the swing of the gen-
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erators in Area 1 against the generators in Area 2 and the frequency of the
oscillation is about 0.7 Hz or 4.73 rad/s.

With the proposed DFIG model and the network interface technique, we are
able to build the entire system described in differential and algebraic equations
in Matlab/Simulink. We also assume that the initial slip of the DFIG is -0.1,
which means that the DFIG is operating at super synchronous speed.

5 Control of DFIG

The controls of the DFIG include the inner current loop to track a current ref-
erence and the outer loop to control the active power and the reactive power. In
addition to those controls, in this paper, we also show how to design a supple-
mental inter-area oscillation damping controller based on the Matlab/Simulnk
model.

5.1 Inner Current Control Loop of DFIG

The inner current control makes the response of the DFIG faster. Rotor cur-
rents are measured and fed back to the controller to generate a suitable rotor
voltage. From the voltage equations expressed in (1), the state space model of
the currents is already shown in Section 2.

Two PI controllers, one from iqr to vqr and the other from idr to vdr are used
to track the reference rotor current value as in Fig. 10.
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Fig. 10. Current control loops.

The DFIG has a natural oscillation mode of about 60 Hz and hence a higher-
than 60 Hz bandwidth means a fast response. The PI controllers are to be
designed to have 100 Hz loop gain-crossover-frequency and 90◦ phase margin
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[12]. Using Matlab/Simulink “linmod” function, we can derive the linear state
space model from the Simulink model. From the linear state space model, clas-
sical control methods can be applied to design the controllers. Bode plots and
root loci can all be developed based on the state space model. The parameters
of the PI controllers are shown in the Appendix.

5.2 Active Power and Reactive Power Control of DFIG

Active power and reactive power tracking can be achieved by two PI con-
trollers. At steady state, the total generated power should equal to the me-
chanical power from the wind turbine. The total generated power equals to the
difference between the the stator power and the rotor power or Pg = Ps − Pr.
When the slip is greater than zero or when the wind turbine runs at sub-
synchronous speed, Pr > 0 or the rotor draws slip power from the grid. When
the wind turbine runs at super synchronous speed, Pr < 0 or the rotor sup-
plies slip power to the grid. The command of the active power changes when
the wind speed changes to extract maximum power from wind [3]. For the
test system, the wind speed is assumed to be constant, and hence the power
command is assumed to be constant as well.

Power plants are usually required to have the capability to control their reac-
tive power within 0.95 leading to 0.95 lagging range. Therefore, reactive power
control is also important in a DFIG system.
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Fig. 11. Active power and reactive power control loops.

The PQ tracking controllers are PI controllers shown in Fig. 11. Due to the
decoupling nature of vector control, we can adjust iqr based on P and adjust
idr based on Q.
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5.3 Damping Control of DFIG

Since the current loop is very fast and its bandwidth is very high compared
to the damping control bandwidth, we will not put a supplementary signal at
the current control loop. Instead, we propose to add the supplementary signal
at the active power control loop. Since inter-area oscillation is a phenomenon
related to the rotor angle and active power, active power modulation is an
effective method for oscillation damping in power systems.

The rotor angle difference has a good observability of the inter-area oscillation
mode between the two areas [13]. The angle difference signal can be obtained
through a state-of-art Phasor Measurement Unit technology. In this paper, we
assume that the angle difference signal is available.

The open loop frequency responses of two different systems are compared in
Fig. 12. The first system has the input/output pair as P modulation versus
the rotor angle difference. The second system has the input/output pair as Q
modulation and the rotor angle difference.
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Fig. 12. Open-loop frequency responses with P modulation or Q modulation

It is seen that at the oscillation frequency is about 4 rad/s and the first
system has a higher magnitude compared to the second system. To control
the first system, we will need a smaller gain. Smaller gain is preferred since
it avoids controller saturation. The frequency responses confirme that active
power modulation is a good choice for inter-area oscillation damping. There-
fore, we use P modulation for inter-area oscillation damping control.

The overall control structure of the DFIG rotor side converter is shown in Fig.
13. The damping control scheme is shown in Fig. 14.
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The root locus diagram of the open loop system is shown in Fig. 15. The open
loop system is unstable since there are two pairs of complex poles on the right
half plane. One pair of poles correspond to the inter-area oscillation mode
at 4.73 rad/s and the other pair corresponds to an oscillation mode at 7.74
rad/s. The second pair of poles have the associated zeros close by and hence
it is difficult to move the second pair of poles to the left half plan. The best
option is to move the poles close to the zeros as fast as possible with gain
increasing.
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Fig. 15. Root locus of the open loop
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A proportional controller cannot do the job. This is due to the fact that the
two oscillation modes (root locus) will move in opposite directions according
to the root locus diagram. Moving one mode to the left plane means moving
the other mode to the right plane. Thus a more complicated controller is
required. The open-loop system has a high order and the design is simplified
by considering the dominant zeros and poles only. The transfer function of the
simplified system is shown as:

P = − (s + 0.1 ± j8.43)(s + 4.22 ± j14.5)

(s − 0.209 ± j4.79)(s − 0.25 ± j7.9)(s + 6.5 ± j10.5)
. (9)

The frequency response of the simplified system P is compared with the orig-
inal open loop system (Fig. 16). It is found that the phase angles over the
frequency range 1-100 rad/s are the same. However, there are differences in
the magnitudes. Providing P with a gain k = 3 makes Pk have the same
frequency response as the original open-loop system as shown in Fig. 16.
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Fig. 16. Bode plots of the system and the simplified system

We now use the modified low-order system Pk to design a controller that can
move the two pairs of unstable poles to the left plane. It is found that the first
pair of poles corresponds to the inter-area oscillation mode. The frequency of
the mode in the open-loop system is 4.73 rad/s. The second pair of the poles
corresponds to a oscillation mode with a frequency of 7.74 rad/s. Apparently,
the selected input signal (rotor angle difference) is not effective in enhancing
the damping of the second oscillation mode since the poles are very close to
the zeros. To enhance the damping of the inter-area oscillation mode, a pair of
complex zeros are added in the left plane close to the poles to attract the poles
to the left plane when the gain increases. To make the controller proper, two
real poles on the left real axis are also added. To make the second pair of poles
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move to the corresponding zeros as fast as possible, two pairs of zeros-poles
nearby are added.

The transfer function of the controller Gd is given by

Gd =
(1 + 0.052s + 0.332s2)(1 + 0.0084s + 0.162s2)

(1 + 0.12s)(1 + 0.049s)(1 + 0.0063s + 0.0892s2)
. (10)

The root locus diagram of the compensated system GdP is shown in Fig. 17.
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Fig. 17. Root locus after compensation

The gain that corresponds to maximum damping ratio for the inter-area os-
cillation mode is picked from the root locus diagram. Here the gain is chosen
as 5 and the final damping controller designed is given by Kd = 5Gd.

6 Simulation Results

Time-domain simulation is performed on the test system. The system will
operate under steady state for 0.1 second. The power transfer between the
two areas is 400 MW. A temporary three-phase fault occurs at Bus 3 and is
cleared after 0.1 second. Figs. 18 and 19 show the dynamic responses of the
synchronous generators and the DFIG when there is no inter-area oscillation
control. In Fig. 18, the relative angle differences, rotor speeds and electric
power exporting levels are plotted. In Fig. 19, the DFIG rotor speed, DFIG
mechanical torque, electric torque and terminal voltage are plotted. The sys-
tem suffers from low-frequency oscillations and as time goes by, the oscillations
increase and the system becomes unstable.
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Fig. 18. Synchronous generator dynamic responses with no supplementary damping
control. (a) Relative rotor angles δ21, δ31 and δ41. (b) Rotor speeds of the four syn-
chronous generators. (c) Output power levels from the four synchronous generators.
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Fig. 19. Wind turbine generation dynamic responses with no supplementary damp-
ing control. (a) Speed of DFIG rotor. (b) Output P and Q of the DFIG (P is above
curve Q). (c) Terminal voltage magnitude of the DFIG.

Figs. 20-22 show the dynamic responses of the synchronous generators, the
induction generator, damping controller input/output and DFIG rotor volt-
age vqr and vdr with the auxiliary damping control added for active power
modulation.

The dynamic responses of the rotor angles are plotted together for the two
scenarios: 1) with no damping control, and 2) with damping control. The plots
are shown in Fig. 23 where the dashed lines correspond to the first scenario and
the solid lines correspond to the second scenario. From the plots, we can verify
the effectiveness of the damping controller to damp out the 0.7 Hz inter-area
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Fig. 20. Synchronous generator dynamic responses with supplementary damping
control. (a) Relative rotor angles δ21, δ31 and δ41. (b) Rotor speeds of the four syn-
chronous generators. (c) Output power levels from the four synchronous generators.
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oscillation. Meanwhile the other oscillation mode tends to damp out as well.
Compared to the originally unstable case, the modified system becomes stable
with the addition of a supplementary control loop. The enhanced stability can
further help to improve the transfer capability and move more wind power to
the market.
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7 Conclusion

This paper proposes a methodology to model induction machines in Mat-
lab/Simulink using matrix/vector concept. This methodology greatly saves
the modeling time and debugging time. Models built in this way are easy to
be understood by students and engineers. The integration of the developed
DFIG model with the network is presented in the paper. The interconnecting
technique takes into consideration the DFIG vector control scheme by trans-
ferring voltage and current phasors between two reference frames. The design
of the DFIG rotor-side converter control is also demonstrated in this paper.
The effectiveness of the inner current control loops, the active and reactive
control loops as well as the inter-area oscillation damping control loops is also
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demonstrated through simulation.
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Appendix

Synchronous generator parameters:
Rating: 835 MVA, line to line voltage: 26 kV, poles: 2, speed: 3600 r/min
Combined inertia of generator and turbine: H = 5.6 s
rs = 0.00243Ω, 0.003 pu, Xls = 0.1538Ω, 0.19 pu
Xq = 1.457Ω, 1.8pu, Xd = 1.457Ω, 1.8pu
r′kq1 = 0.00144Ω, 0.00178pu, r′fd = 0.00075Ω, 0.000929pu
X ′

lkq1 = 0.6578Ω, 0.8125pu, X ′

lfd = 0.1165Ω, 0.1414pu
r′kq2 = 0.00681Ω, 0.00841pu, r′kd = 0.01080Ω, 0.01334pu
X ′

lkq2 = 0.07602Ω, 0.0939pu, X ′

lkd = 0.06577Ω, 0.08125pu

Induction generator parameters:
H = 5s, rs = 0.00059pu, XM = 0.4161pu, rr = 0.00339pu, Xls = 0.0135pu,
Xlr = 0.0075pu.

Current control loops: 0.0352 + 1.6765
s

.

PQ control loops: 1 + 1

s
.
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